화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.5, 570-576, August, 2004
유·무연 혼합탄의 수소첨가 가스화반응특성 연구
Hydrogasification of Mixed Coal Composed of Bituminous and Anthracite Coal
E-mail:
초록
수소첨가 가스화반응 특성을 조사하기 위해 800 ℃, 8MPa에서 조업 가능한 회분식반응기를 이용하여 실험을 수행하였다. 실험에 사용한 석탄은 호주 노보산 유연탄과 국내의 영월산 무연탄을 사용하였다. 반응기 내 압력감소 속도는 기상물 생성속도를 나타냄을 알 수 있었으며 이러한 결과는 반응시간에 따른 전환율변화로부터 확인할 수 있었다. 기상물 생성량과 촤의 전환율은 무연탄 함량비가 증가할수록 감소하였다. 실험으로부터 측정한 전환율은 수소가스 물질수지와 shrinking core model을 이용하여 구한 예측치와 잘 일치하였으며 무연탄 함량비가 0.3인 유·무연 혼합탄의 활성화 에너지는 275 KJ/mole이었다. 수분함량 30 wt%까지는 반응을 촉진시키나 그 이상의 함량에서는 다소 반응을 억제시켰다. 반응성 증진을 위해 담지된 촉매의 활성도는 K2CO3 > Na2CO3 > Ba(NO3)2 > Fe(NO3)2 > Ni(NO3)2 > FeSO4 순이었다. K2CO3촉매가 담지된 촤에 수분을 첨가할 시 시너지효과에 의해 수소첨가 가스화반응이 크게 촉진되었다.
Experiments have been carried out in a batch reactor capable of operating at 800 ℃ and 8 MPa to investigate the reaction characteristics of hydrogasification. Coals used in the experiments were Novo bituminous coal of Australia and Youngwyel anthracite coal of Korea. It is found that the rate of pressure decrease in the reactor represented the decreased rate of gas production; this was confirmed by the change of conversion with reaction time. Gas product and char conversion decreased with increasing anthracite coal fraction. Conversion data measured by experiments well agreed with the prediction data calculated by mass balance of hydrogen gas and shrinking core model. The activation energy of mixed coal having anthracite fraction of 0.3 was 275 KJ/more. The addition of water upto 30 wt% promoted reaction, however, in the higher contents the water inhibited the reaction. The catalytic activities of metal salts were in the order of K2CO3 > Na2CO3 > Ba(NO3)2 > Fe(NO3)2 > Ni(NO3)2 > FeSO4. The hydrogasification rate with K2CO3 catalyst was largely enhanced by synergistic effect of water addition.
  1. James J, Ma L, Coal Gasification, SRI International, Report No. 154 (1983)
  2. Elliott MA, Chemistry of Coal Utilization, Vol. II, Wiley, New York (1981)
  3. Probstein RF, Hicks RE, Synthetic Fuels, 1st ed., McGraw-Hill, New York (1982)
  4. Wen CY, Lee ES, Coal Conversion Technology, Addision-Wesley Publishing Co. Inc. (1979)
  5. Shires JM, Fuel, 60, 809 (1981) 
  6. U.S. Patent, 3,985,519 (1976)
  7. U.S. Patent, 3,847,567 (1974)
  8. Anthony DB, Haward JB, AIChE J., 22(4), 625 (1976) 
  9. Ruby J, Johnson A, Ziock H, Lackner K, Proceeding of 21th International Technical Conference on Coal Utilization & Fuel Systems, 767, Clearwater, Florida, U.S.A. (2002)
  10. 합성천연가스 및 수소 제조기술 개발연구, KIER-966405/3, 한국에너지기술연구원, 대전 (1996)
  11. Jang HT, Kim SB, Cha WS, Hong SC, Doh DS, Korean J. Chem. Eng., 20(1), 138 (2003)
  12. Suzuki T, Funaki M, Tanaka K, Okazaki N, Yamada T, Fuel, 75, 627 (1996) 
  13. Nishiyama Y, Fuel, 65, 1403 (1986)
  14. Karcz A, Porada S, Fuel, 74, 806 (1995) 
  15. Huttinger K, Schleicher P, Fuel, 60, 1005 (1981) 
  16. Cha WS, Baek IH, Park SD, J. Korean Ind. Eng. Chem., 15(1), 34 (2004)
  17. Arendt P, Heek K, Fuel, 60, 779 (1981) 
  18. Karcz A, Porada S, Fuel, 75, 641 (1996) 
  19. Lee WJ, Kim SD, Fluidization VII, 479, Engineering Foundation, N.Y., U.S.A. (1992)
  20. Tomita A, Mahajan OP, Walker PL, Fuel, 56, 137 (1977) 
  21. Johnson JL, Am. Chem. Soc. Div. Fuel Chem., 20, 61 (1975)
  22. Mckee DW, Spiro CL, Kosky PG, Lamby EJ, Fuel, 62, 217 (1983) 
  23. Baker RTK, Lund CRF, Chludzinski JJ, J. Catal., 87, 255 (1984)