화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.5, 537-543, August, 2004
방추 가공제로서 실란 함유 폴리우레탄의 합성 및 특성
Synthesis and Characterization of Si-containing Polyurethane for Crease Resist Finishing Agent
E-mail:
초록
섬유의 방추 가공제인 실란 함유 폴리우레탄을 단계별 중합반응을 통하여 합성하였다. 단계 반응 중합체의 구조를 FT-IR과 29Si CP/MAS NMR 및 13C CP/MAS NMR로 확인하였으며, 실란 함유 폴리우레탄의 분자량과 실란의 조성비를 MALDI-TOF MS 및 EDX를 통하여 확인하였다. 실란 함유 폴리우레탄의 분자량은 예비 중합체의 경우 수평균 분자량(Mn), 중량평균 분자량(Mw)은 각각 9500과 10300이었으며 사슬 연장반응 후 생성물의 Mn, Mw는 각각 9800과 11000이었고 가교반응 후 생성물의 Mn, Mw는 각각 13300과 15100이었다. 또한 각 단계별로 반응이 진행됨에 따라 실란 함유 폴리우레탄 내의 실란 조성비는 각각 27.3%, 24.7%, 19.9%로 감소하였다. 각 반응단계에서 합성한 실란 함유 폴리우레탄의 Tg는 각각 54 ℃, 50 ℃및 120 ℃로 가교가 진행됨에 따라 Tg가 증가하였고, 중량 감소율은 300 ℃까지 서서히 감소하였고 이후 급격한 열분해가 발생하였다.
Silane (Si)-containing polyurethane for a crease resist finishing agent was synthesized by a step reaction. Their structures were confirmed by the measurements of FT-IR, 29Si CP/MAS NMR and 13C CP/MAS NMR spectrometer. The molecular weight and silane content in polyurethane were measured by MALDI-TOF MS and EDX. The number averaged molecular weight (Mn) of prepolymer, chain extended and crosslinked Si-containing polyurethane were 9800 and 13300, respectively. Also, their weight averaged molecular weight (Mw) were 10300, 11000, and 15100, respectively. As the step reaction was processed, silane content of Si-containing polyurethane was 27.3%, 24.7%, and 19.9%, respectively. The glass transition temperature (Tg) of Si-containing polyurethane as the step reaction was 54 ℃, 50 ℃, and 120 ℃, respectively. There was a gradual weight loss up to 300 ℃ and at over 300 ℃ the thermal degradation rate of Si-containing polyurethane was rapid.
  1. Park JL, Lee ES, Ko SW, J. Korean Fiber Soc., 33, 429 (1996)
  2. Choi HM, Mahmood T, Li JD, Schlup J, J. Appl. Polym. Sci., 55(2), 375 (1995) 
  3. Zhou YJ, Luner P, Caluwe P, J. Appl. Polym. Sci., 58(9), 1523 (1995) 
  4. Kim YH, Song KH, J. Korean Fiber Soc., 33, 51 (1996)
  5. Lee DW, Lee ES, Ko SW, J. Korean Fiber Soc., 35, 8 (1998)
  6. Saxena PK, Raut KG, Srinivasan SR, Sivaram S, Rawat RS, Jain RK, Constr. Build Mater., 5, 208 (1991) 
  7. Chew MYL, Zhou X, Tay YM, Polym. Testing, 20, 87 (2001) 
  8. Tang YW, Santerre JP, Labow RS, Taylor DG, J. Appl. Polym. Sci., 62(8), 1133 (1996) 
  9. Tonelli C, Trombetta T, Scicchitano M, Castiglioni G, J. Appl. Polym. Sci., 57(9), 1031 (1995) 
  10. Boxhammer J, Polym. Testing, 20, 719 (2001) 
  11. Noh MH, Lee DC, J. Appl. Polym. Sci., 74(12), 2811 (1999) 
  12. Maity M, Khatua BB, Das CK, Polym. Degrad. Stabil., 72, 499 (2001) 
  13. Cho JW, Woo KS, Sul KI, Chun BC, J. Korean Fiber Soc., 38, 1 (2001)
  14. Lim CH, Choi HS, Noh ST, J. Korean Ind. Eng. Chem., 10(6), 913 (1999)
  15. Kang DW, Han MS, Kang HJ, Lee SM, Kim YM, J. Korean Ind. Eng. Chem., 12(2), 205 (2001)
  16. Vlad S, Vlad A, Oprea S, Eur. Polym. J., 38, 829 (2002) 
  17. Kim BK, Lee SY, Xu M, Polymer, 37(26), 5781 (1996) 
  18. Lee BS, Chun BC, Chung YC, Sul KI, Cho JW, Macromolecules, 34(18), 6431 (2001) 
  19. David DJ, Staley HB, Analytical Chemistry of Polyurethane, 1, 85, Wiley-Interscience, New York (1969)
  20. Jung HC, Kang SJ, Kim WN, Kim SB, Lee YB, Hong SH, J. Korean Inst. Gas, 2, 59 (1998)
  21. Schiavon MA, Redondo SUA, Pina SRO, Yoshida IVP, J. Non-Cryst. Solids, 304, 92 (2002) 
  22. Allcock HR, Lampe FW, Contemporary Polymer Chemistry, 1, 428, Prentice-Hall Inc., New Jersey (1981)
  23. Mathew AP, Packirisamy S, Thomas S, Polym. Degrad. Stabil., 72, 423 (2001)