Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.5, 537-543, August, 2004
방추 가공제로서 실란 함유 폴리우레탄의 합성 및 특성
Synthesis and Characterization of Si-containing Polyurethane for Crease Resist Finishing Agent
E-mail:
초록
섬유의 방추 가공제인 실란 함유 폴리우레탄을 단계별 중합반응을 통하여 합성하였다. 단계 반응 중합체의 구조를 FT-IR과 29Si CP/MAS NMR 및 13C CP/MAS NMR로 확인하였으며, 실란 함유 폴리우레탄의 분자량과 실란의 조성비를 MALDI-TOF MS 및 EDX를 통하여 확인하였다. 실란 함유 폴리우레탄의 분자량은 예비 중합체의 경우 수평균 분자량(Mn), 중량평균 분자량(Mw)은 각각 9500과 10300이었으며 사슬 연장반응 후 생성물의 Mn, Mw는 각각 9800과 11000이었고 가교반응 후 생성물의 Mn, Mw는 각각 13300과 15100이었다. 또한 각 단계별로 반응이 진행됨에 따라 실란 함유 폴리우레탄 내의 실란 조성비는 각각 27.3%, 24.7%, 19.9%로 감소하였다. 각 반응단계에서 합성한 실란 함유 폴리우레탄의 Tg는 각각 54 ℃, 50 ℃및 120 ℃로 가교가 진행됨에 따라 Tg가 증가하였고, 중량 감소율은 300 ℃까지 서서히 감소하였고 이후 급격한 열분해가 발생하였다.
Silane (Si)-containing polyurethane for a crease resist finishing agent was synthesized by a step reaction. Their structures were confirmed by the measurements of FT-IR, 29Si CP/MAS NMR and 13C CP/MAS NMR spectrometer. The molecular weight and silane content in polyurethane were measured by MALDI-TOF MS and EDX. The number averaged molecular weight (Mn) of prepolymer, chain extended and crosslinked Si-containing polyurethane were 9800 and 13300, respectively. Also, their weight averaged molecular weight (Mw) were 10300, 11000, and 15100, respectively. As the step reaction was processed, silane content of Si-containing polyurethane was 27.3%, 24.7%, and 19.9%, respectively. The glass transition temperature (Tg) of Si-containing polyurethane as the step reaction was 54 ℃, 50 ℃, and 120 ℃, respectively. There was a gradual weight loss up to 300 ℃ and at over 300 ℃ the thermal degradation rate of Si-containing polyurethane was rapid.
- Park JL, Lee ES, Ko SW, J. Korean Fiber Soc., 33, 429 (1996)
- Choi HM, Mahmood T, Li JD, Schlup J, J. Appl. Polym. Sci., 55(2), 375 (1995)
- Zhou YJ, Luner P, Caluwe P, J. Appl. Polym. Sci., 58(9), 1523 (1995)
- Kim YH, Song KH, J. Korean Fiber Soc., 33, 51 (1996)
- Lee DW, Lee ES, Ko SW, J. Korean Fiber Soc., 35, 8 (1998)
- Saxena PK, Raut KG, Srinivasan SR, Sivaram S, Rawat RS, Jain RK, Constr. Build Mater., 5, 208 (1991)
- Chew MYL, Zhou X, Tay YM, Polym. Testing, 20, 87 (2001)
- Tang YW, Santerre JP, Labow RS, Taylor DG, J. Appl. Polym. Sci., 62(8), 1133 (1996)
- Tonelli C, Trombetta T, Scicchitano M, Castiglioni G, J. Appl. Polym. Sci., 57(9), 1031 (1995)
- Boxhammer J, Polym. Testing, 20, 719 (2001)
- Noh MH, Lee DC, J. Appl. Polym. Sci., 74(12), 2811 (1999)
- Maity M, Khatua BB, Das CK, Polym. Degrad. Stabil., 72, 499 (2001)
- Cho JW, Woo KS, Sul KI, Chun BC, J. Korean Fiber Soc., 38, 1 (2001)
- Lim CH, Choi HS, Noh ST, J. Korean Ind. Eng. Chem., 10(6), 913 (1999)
- Kang DW, Han MS, Kang HJ, Lee SM, Kim YM, J. Korean Ind. Eng. Chem., 12(2), 205 (2001)
- Vlad S, Vlad A, Oprea S, Eur. Polym. J., 38, 829 (2002)
- Kim BK, Lee SY, Xu M, Polymer, 37(26), 5781 (1996)
- Lee BS, Chun BC, Chung YC, Sul KI, Cho JW, Macromolecules, 34(18), 6431 (2001)
- David DJ, Staley HB, Analytical Chemistry of Polyurethane, 1, 85, Wiley-Interscience, New York (1969)
- Jung HC, Kang SJ, Kim WN, Kim SB, Lee YB, Hong SH, J. Korean Inst. Gas, 2, 59 (1998)
- Schiavon MA, Redondo SUA, Pina SRO, Yoshida IVP, J. Non-Cryst. Solids, 304, 92 (2002)
- Allcock HR, Lampe FW, Contemporary Polymer Chemistry, 1, 428, Prentice-Hall Inc., New Jersey (1981)
- Mathew AP, Packirisamy S, Thomas S, Polym. Degrad. Stabil., 72, 423 (2001)