Journal of the American Chemical Society, Vol.126, No.23, 7341-7344, 2004
One-electron oxidation of DNA: The effect of replacement of cytosine with 5-methylcytosine on long-distance radical cation transport and reaction
One-electron oxidation of duplex DNA generates a radical cation that migrates through the nucleobases until it is trapped by an irreversible reaction with water or oxygen. The trapping site is often a GG step, because this site has a relatively low ionization potential and this causes the radical cation to pause there momentarily. Modifications to guanine that lower its ionization potential convert it to a better trap for the radical cation. One such modification is the formation of the Watson-Crick base pair with cytosine, which is reported to very significantly decrease its ionization potential. Methylation of cytosine to form 5-methylcytosine (5-MeC) is a naturally occurring reaction in genomic DNA that may be associated with regions of enhanced oxidative damage. The G-5-MeC base pair is reported to be more rapidly oxidized than normal G-C base pairs. We examined the oxidation of DNA oligomers that were substituted in part with 5-MeC. Irradiation of a covalently linked anthraquinone group injects a radical cation into the DNA and results in strand cleavage after piperidine treatment. For the sequences examined, substitution of 5-MeC for C has no measurable effect on the reactions. Cytosine methylation is not a general cause of enhanced oxidative damage in DNA.