- Previous Article
- Next Article
- Table of Contents
Journal of Physical Chemistry B, Vol.108, No.20, 6508-6518, 2004
Torsional deformation of double helix in interaction and aggregation of DNA
We incorporate sequence-dependent twisting between adjacent base pairs and torsional elasticity of double helix into the theory of DNA-DNA interaction. The results show that pairing and counterion-induced-aggregation of nonhomologous DNA are accompanied by considerable torsional deformation. The deformation tunes negatively charged phosphate strands and positively charged grooves on opposing molecules to stay "in register", substantially reducing nonideality of the helical structure of DNA. Its cost, however, makes interaction between nonhomologous DNA less energetically favorable. In particular, interaction between double helical DNA may result in sequence homology recognition and selective pairing of homologous fragments containing more than 100-200 base pairs. We also find a weak, but potentially measurable, increase in the expected counterion concentration required for aggregation of nonhomologous DNA and slightly higher solubility of such DNA above the critical concentration.