Journal of Chemical Physics, Vol.120, No.22, 10455-10469, 2004
Postnucleation droplet growth in supersaturated gas with arbitrary vapor concentration
This work concerns the reexamination and extension of the current theory of phase transition dynamics for liquid droplets growing on soluble aerosols from a supersaturated gas mixture for the general case of arbitrary value of vapor concentration. We found that the inconsistency in the common treatment of the vapor diffusion, due to an implicit assumption of the constancy of gas density in the vicinity of a droplet by neglecting its dependency on temperature and vapor concentration, leads to the obvious discrepancy in the Maxwell expression for the growth rate regarding droplets of near critical size. Restoring the correct treatment of the vapor diffusion in terms of the mass concentration of water vapor and taking into the consideration variations of gas density in the vicinity of a droplet in compliance with the equation of state of moist air, we have obtained a new expression for the droplet growth rate valid for an arbitrary value of vapor concentration. The limitations imposed by the molecular kinetic fluxes to postnucleation diffusional growth of small droplets with a large Knudsen number are also reevaluated to include previously neglected physical effects. In particular, the essential contribution of the vapor molecular energy flux into the total kinetic molecular heat flux as well as the temperature variations of mean thermal velocities of air and vapor molecules in the vicinity of the droplet interface have been taken into consideration. Surprisingly significant differences have been found in new expressions derived for the droplet growth rate and droplet temperature, even in the limit of small vapor concentration, if comparing with commonly used results. These findings could help with better interpretation of experimental measurements to infer more reliable data for the mass and thermal accommodations coefficients. (C) 2004 American Institute of Physics.