화학공학소재연구정보센터
Journal of Chemical Physics, Vol.120, No.16, 7725-7732, 2004
Spectroscopic consideration of the surface potential built across phthalocyanine thin films on a metal electrode
The nonlinear optical properties of tert-butyl phthalocyanine copper Langmuir-Blodgett (CuttbPc LB) films and vacuum-evaporated phthalocyanine copper (CuPc) films deposited on a metal surface were investigated by second-harmonic generation (SHG) spectroscopy. At the organic/metal interface, a space charge field is formed due to the presence of excess charge injected from a metal electrode to the organic layer. Since the Pc molecule has D-4h symmetry, an inversion center is present and the optical SH process is not allowed under the electric-dipole approximation. However, the space charge field at the interface directly influences the symmetric structure of the electrons in the Pc molecule. We investigated the contributions of the surface potential to the SHG using Pc LB and vacuum-evaporated films deposited on aluminum (Al) and gold (Au) metal electrodes, where a distinctive difference in the spectrum for the Pc films on the Al and Au surfaces was observed. The contribution of the surface potential was revealed based on the resonant conditions of the SH process, taking into account the electric-quadrupole transition and dc-field-induced electric-dipole transition. (C) 2004 American Institute of Physics.