Journal of Chemical Physics, Vol.120, No.5, 2351-2358, 2004
Vibrational relaxation and coupling of two OH-stretch oscillators with an intramolecular hydrogen bond
We studied the vibrational dynamics of the OH-stretch oscillators of an alcohol with two vicinal OH groups using femtosecond midinfrared pump-probe spectroscopy. The absorption spectrum of pinacol (2,3-dimethyl-2,3-butanediol) in CDCl3 shows two OH-stretch peaks belonging to hydrogen bonded and free OH groups. The anharmonicities of the hydrogen-bonded and free OH-stretch vibrations are 180 and 160 cm(-1), respectively. The lifetime T-1 of the OH-stretch vibration is found to be 3.5+/-0.4 ps for the hydrogen bonded and 7.4+/-0.5 ps for the free OH group. We observed sidebands in the transient spectra after excitation of the bonded OH group, which we attribute to a progression in a low-frequency hydrogen-bond mode. The sideband is redshifted 60 cm(-1) with respect to the 0-->1 transition. Due to the coupling between the two OH groups and the presence of the sidebands, simultaneous excitation of both OH-stretch vibrations leads to oscillations on the pump-probe signal with frequencies of 40 and 60 cm(-1). (C) 2004 American Institute of Physics.