화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.38, No.2, 255-258, April, 2000
분무열분해법에서 LiCl 융제가 Gd2O3:Eu 형광체 분말의 특성에 미치는 영향
The Effect of LiCl Flux on the Characteristics of Gd2O3:Eu Phosphor Particles in the Spray Pyrolysis
E-mail:
초록
분무열분해법에서 LiCl 융제를 도입하여 900℃의 제조온도에서 높은 발광특성을 가지는 Gd2O3:Eu 형광체 입자를 직접 제조하였다. LiCl 융제를 첨가한 용액으로부터 제조된 Gd2O3:Eu 입자는 융제를 첨가하지 않고 제조된 입자에 비해 빛발광(photoluminescence) 특성이 우수하였다. LiCl 함량이 Gd2O3의 중량비로 20%일 때, 최고의 발광특성을 보였으며, 이때의 발과이 휘도는 융제를 사용하지 않고 직접 제조한 입자의 250%였다. 분무열분해법에서 융제는 고상법에서와 같이 입자의 결정성장과 도핑 물질의 활성화를 촉진시키는 역할뿐만 아니라, 반응 중 입자의 내부에서 용융, 입자의 내부 구조를 치밀하게 하고 입자의 내부 및 표면에 존재하는 결점들을 제거해 줌으로써 Gd2O3:Eu 형광체 입자의 발광특성을 향상시켰다.
Gd2O3:Eu phosphor particles of high brightness were directly prepared at 900℃ by spray pyrolysis with LiCl as flux. The Gd2O3:Eu particles prepared from solution with LiCl flux had higher PL(photoluminescence) intensities than those prepared from solution without flux. The particles prepared from solution with 20wt% LiCl had the highest PL intensity, which was 250% of that of particles prepared from solution without LiCl flux. In the spray pyrolysis, the flux acts as promotor of the growth of crystallite and activation of doping material, as in the solid state reaction method. Additionally, the flux improved PL intensity of Gd2O3:Eu phosphor particles by densifying the internal structure and eliminating the defect existing inside and surface of Gd2O3:Eu phosphor particles.
  1. Maestro P, Huguenin D, Seigneurim A, Deneuve F, Lann PL, Berar JF, J. Electrochem. Soc., 139(5), 1479 (1992) 
  2. Cooper JA, Paris HG, Stock SR, Yang S, Summers CJ, Hill DN, J. SID, 6/3, 163 (1998)
  3. Rao RP, J. Electrochem. Soc., 143(1), 189 (1996) 
  4. Erdei S, Roy R, Harshe G, Juwhari H, Agrawal D, Ainger FW, White WB, Mater. Res. Bull., 30(6), 745 (1995) 
  5. Kottaisamy M, Jeyakumar D, Jagannathan R, Rao MM, Mater. Res. Bull., 31(8), 1013 (1996) 
  6. Ohno K, Abe T, J. Electrochem. Soc., 133(3), 638 (1986) 
  7. Ohno K, Abe T, J. Electrochem. Soc., 134(8), 2072 (1987) 
  8. Oshio S, Matsuoka T, Tanaka S, Kobayashi H, J. Electrochem. Soc., 145(11), 3898 (1998) 
  9. Yan MF, Juo CD, Ling HC, J. Electrochem. Soc., 134(2), 493 (1987) 
  10. Kang YC, Park SB, Lenggoro IW, Okuyama K, J. Phys. Chem. Solids, 60(3), 379 (1999) 
  11. Kang YC, Lenggoro IW, Okuyama K, Park SB, J. Electrochem. Soc., 146(3), 1227 (1999) 
  12. Kang YC, Lenggoro IW, Okuyama K, Park SB, J. Mater. Res., 14(6), 2611 (1999)
  13. Kang YC, Park SB, Lenggoro IW, Okuyama K, Jpn. J. Appl. Phys., 38(4A), 2013 (1999) 
  14. Kang YC, Chung YS, Park SB, J. Am. Ceram. Soc., 82(8), 2056 (1999)
  15. Kang YC, Chung YS, Park SB, HWAHAK KONGHAK, 38(1), 62 (2000)
  16. Kang YC, Roh HS, Park SB, HWAHAK KONGHAK, 37(6), 921 (1999)
  17. McKittrick J, Hoghooghi B, Dubbleday W, Kavanagh K, Kinsman K, Shea L, Sluzky E, Mater. Res. Soc. Proc., 348, 519 (1994)