Journal of Applied Polymer Science, Vol.92, No.3, 1771-1781, 2004
Interfacial effects in polypropylene-silica nanocomposites
Grafted inorganic nanoparticles can greatly improve the mechanical performance of polymers. To examine the effects of the interfacial characteristics generated by the grafting polymer bonded to nanoparticle surfaces, we chemically grafted nano-silica with different polymers and then melt-mixed it with polypropylene (PP). We extracted the homopolymers produced during the graft polymerization from the grafted products before the composites were manufactured to get rid of the side effects of the nongrafting polymers. We tailored the interfacial interaction between the grafted nano-SiO2 and PP matrix by changing the amount of the grafting polymers on the nanoparticles, that is, the grafting percentage. Mechanical tests indicated that all the composites incorporated with grafted nano-SiO2 particles possessed much higher impact strength than untreated SiO2/PP composites and neat PP. The greatest contribution of the particles was made at a low grafting percentage. Tensile measurements showed that the treated nanoparticles could provide PP with stiffening, strengthening, and toughening effects at a rather low filler content (typically 0.8 vol %) because of the enhanced interfacial adhesion resulting from molecular entanglement and interdiffusion between the grating polymers on the nanoparticles and matrix macromolecules. The presence of grafting polymers on the nanoparticles provided the composites with a tailorable interphase. The tensile performance of the composites was sensitive to the nature of the grafting polymers. Basically, a hard interface was beneficial to stress transfer, whereas a soft one hindered the development of cavities in the matrix. (C) 2004 Wiley Periodicals, Inc.