Langmuir, Vol.20, No.9, 3551-3558, 2004
Optical spectroscopic and TEM studies of catanionic micelles of CTAB/SDS and their interaction with a NSAID
If a vesicle is a better model of a membrane in the context of the hydrophobic effect, then from the charge distribution point of view, a catanionic micelle is a closer model to a biomembrane. We have prepared and characterized two different types of catanionic micelles of sodium dodecyl sulfate (SDS) and cetyl N,N,N-trimethylammonium bromide (CTAB) having different surface charge ratios using optical spectroscopy and transmission electron microscopy. The average size of both types of mixed micelles was found to be much larger than that of micelles containing uniformly charged headgroups. Catanionic micelles containing higher concentrations of positively charged headgroups (CTAB) are larger in size, less compact, and more polar compared to the micelles containing higher concentrations of negatively charged headgroups (SDS). We have used these catanionic micelles as membrane mimetic systems to understand the interaction of piroxicam, a nonsteroidal anti-inflammatory drug (NSAID) of the oxicam group, with biomembranes. In continuation of our work on membrane mimetic systems, we have used spectral properties of the drug itself to understand the effect of the presence of mixed charges on the micellar surface in guiding the interaction of catanionic micelles with piroxicam. Our earlier studies of the interaction of piroxicam with micelles having uniform surface charges have shown that the charge on the micellar surface not only dictates which prototropic form of the drug will be incorporated in the micelles but also induces a switch-over between different prototropic forms of piroxicam. The equilibrium of this switch-over is extremely sensitive to the environment. In this study, we demonstrate how even small changes in the electrostatic forces obtained by doping the uniformly charged surface of the micelles with oppositely charged headgroups (as in catanionic micelles) are capable of fine-tuning this equilibrium. This implies that the surface charge of biomembranes, which are quite diverse in vivo, might play a significant role in selecting a particular form of the drug to be presented to its targets.