Langmuir, Vol.20, No.4, 1425-1429, 2004
Ultraporous single phase iron oxide-silica nanostructured aerogels from ferrous precursors
Monoliths of iron oxide-silica aerogel nanocomposites have been synthesized using a novel synthesis route which consists of impregnating silica wet gels with anhydrous iron(II) precursors followed by ethanol supercritical drying of the gels. The process yields aerogels exhibiting high porosity, large surface areas (similar to900 m(2)/g), rather low densities (similar to0.6 g/cm(3)), and a homogeneous distribution of single-phase maghemite, gamma-Fe2O3, nanoparticles with average sizes in the 7-8 nm range. Remarkably, the gamma-Fe2O3 nanoparticles are obtained in the as-dried state without the need of postannealing. The nanoparticles are mostly superparamagnetic at room temperature but become blocked in a ferrimagnetic state at lower temperatures.