Langmuir, Vol.20, No.3, 771-777, 2004
Dynamic surface tension and adsorption kinetics of beta-casein at the solution air interface
A diffusion model is proposed to describe the adsorption kinetics of proteins at a liquid interface. The model is based on the simultaneous solution of the Ward-Tordai equation and a set of recently developed equations describing the equilibrium state of the adsorption layer: the adsorption isotherm, the surface layer equation of state, and the function of adsorption distribution over the states with different molar areas. The new kinetics model is compared with dynamic surface tensions of beta-casein solutions measured with the drop/bubble profile and maximum bubble pressure methods. The adsorption process for low concentrations is governed by the diffusion mechanism, while at large protein concentrations this is only the case in the initial stage. The effective diffusion coefficients agree fairly well with literature data. The adsorption values calculated from the dynamic surface tension data agree very well with the used equilibrium adsorption model.