화학공학소재연구정보센터
Polymer(Korea), Vol.28, No.4, 305-313, July, 2004
진공 압력차이법에 의한 나노 정밀도를 가지는 폴리디메틸실록산 형상복제
Fabrication Process of a Nano-precision Polydimethylsiloxane Replica using Vacuum Pressure-Difference Technique
E-mail:
초록
본 연구는 나노 복화공정을 이용하여 마이크로 혹은 나노공정에 응용이 가능한 형상모형 제작공정 개발과 폴리디메틸실록산 (polydimethylsiloxane)를 이용하여 만들어진 형상모형의 몰드로 나노급 정밀도의 폴리디메틸실록산 형상을 복제하는 공정에 관한 것이다. 본 연구에서 제안한 나노 복화공정은 복잡한 형상모형 (pattern)이나 2차원 형상을 CAD 파일 없이 비트맵 그림파일을 이용하여 직접적으로 200 nm 정밀도를 가지는 형상으로 만들 수 있다. 형상모형은 펨토초 레이저를 이용하여 이광자 흡수 중합법으로 제작하기 때문에 형상의 정밀도는 레이저 빔의 회절한계 이하로 얻을 수 있다. 이렇게 제작된 마스터 형상모형은 본 연구에서 제안한 진공압력차이법으로 폴리디메틸실록산 몰드를 제작하여 기존의 제작방법에 비하여 정밀한 제작이 가능함을 보였으며 또한 제작된 몰드를 이용하여 양각의 폴리디메틸실록산 스탬프를 제작하였다.
A vacuum pressure-difference technique for making a nano-precision replica is investigated for various applications. Master patterns for replication were fabricated using a nano-replication printing (nRP) process. In the nRP process, any picture and pattern can be replicated from a bitmap figure file in the range of several micrometers with resolution of 200 nm. A liquid-state monomer is solidified by two-photon absorption (TPA) induced by a femto-second laser according to a voxel matrix scanning. After polymerization, the remaining monomers were removed simply by using ethanol droplets. And then, a gold metal layer of about 30 nm thickness was deposited on the fabricated master patterns prior to polydimethylsiloxane molding for preventing bonding between the master and the polydimethylsiloxane mold. A few gold particles attached on the polydimethylsiloxane stamp during detaching process were removed by a gold selecting etchant. After fabricating the polydimethylsiloxane mold, a nano-precision polydimethylsiloxane replica was reproduced. More precise replica was produced by the vacuum pressure-difference technique that is proposed in this paper. Through this study, direct patterning on a glass plate, replicating a polydimethylsiloxane mold, and reproducing polydimethylsiloxane replica are demonstrated with a vacuum pressure-difference technique for various micro/nano-applications.
  1. Chou SY, Keimel C, Gu J, Nature, 417, 835 (2002) 
  2. Kim YS, Suh KY, Lee HH, Appl. Phys. Lett., 79, 2285 (2001) 
  3. Xia Y, Whitesides GM, Angew. Chem.-Int. Edit., 37, 550 (1998) 
  4. Odom TW, Love JC, Wolfe DB, Paul KE, Whitesides GM, Langmuir, 18(13), 5314 (2002) 
  5. Zaumseil J, Meitl MA, Hsu JWP, Acharya BR, Baldwin KW, Loo YL, Rogers JA, Nano Lett., 3, 1223 (2003) 
  6. Maruo S, Nakamura O, Kawata S, Opt. Lett., 22, 132 (1997)
  7. Maruo S, Kawata S, J. Microelectromechanical Systems, 7, 411 (1998) 
  8. Sun HB, Takada K, Kawata S, Appl. Phys. Lett., 79, 3173 (2001) 
  9. Galajda P, Ormos P, Appl. Phys. Lett., 78, 249 (2001) 
  10. Kawata S, Sun HB, Tanaka T, Takada K, Nature, 412, 697 (2001) 
  11. Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Frohlich L, Popall M, Opt. Lett., 28, 301 (2003)
  12. Sun HB, Matsuo S, Misawa H, Appl. Phys. Lett., 74, 786 (1999) 
  13. Sun HB, Maeda M, Takada K, Chon JWM, Gu M, Kawata S, Appl. Phys. Lett., 83, 819 (2003) 
  14. Sun HB, Xu Y, Juodkazism S, Sun K, Watanabe M, Matsuo S, Misawa H, Nishii J, Opt. Lett., 26, 325 (2001)
  15. Kaneko K, Sun HB, Duan XM, Kawata S, Appl. Phys. Lett., 83, 2091 (2003) 
  16. Tanaka T, Sun HB, Kawata S, Appl. Phys. Lett., 80, 312 (2002) 
  17. Sun HB, Takada K, Kim MS, Lee KS, Kawata S, Appl. Phys. Lett., 83, 1104 (2003) 
  18. Yang HK, Lee KS, unpublished results
  19. Jacobs PF, Stereolithography and other RP&M Technologies, ASME Press (1996)