화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.4, 440-448, June, 2004
Cu, Fe, V이 담지된 활성탄 촉매를 이용한 페놀의 직접합성 연구
Direct Synthesis of Phenol using Activated Carbon Catalysts Supported by Cu, Fe and V
E-mail:
초록
과산화수소를 이용한 벤젠에서 페놀로의 직접 합성 반응을 여러 가지 전이금속이 담지된 활성탄 촉매를 사용하였다. 담지된 전이금속 중에서는 철과 바나듐 촉매가 구리가 담지된 촉매에 비해 페놀 수율이 우수하였다. 페놀제조에 있어 활성탄에 담지된 전이금속의 활성은 V > Fe > Cu 순으로 우수하였으며 하이드록시화 반응에 사용된 촉매의 특성을 알아보기 위해서 XRD, SEM, 질소 흡착에 의한 BET 표면적 그리고 벤젠 및 메탄올의 흡착 실험을 행하였다. 반응물인 벤젠과 생성물인 페놀의 친화도를 벤젠과 메탄올을 각각 이용하여 이들의 물리 흡착량을 MSB를 통하여 알아 보았다. 촉매의 벤젠과 메탄올의 흡착 친화성은 본 반응의 반응성 향상에 중요 인자임이 밝혀졌다.
The direct synthesis of benzene to phenol by hydroxylation with hydrogen peroxide was carried out over various transition metals impregnated with activated carbon. Several transition metals were impregnated on activated carbon, and iron and vanadium impregnated catalysts gave better yields of phenol compared to copper impregnated catalysts. The activity of transition metals supported on activated carbon catalyst in the production of phenol, in decreasing order, was V > Fe > Cu. In addition to the role of transition metals in catalyzing the hydroxylation reaction, hydrophobic nature of the activated carbon surface seems to have enhanced the performance of these catalysts.
  1. Rodrguez-Reinoso F, Carbon, 36, 159 (1998) 
  2. Orita H, Hayakawa Y, Shimizu M, Takehira K, J. Mol. Catal., 42, 99 (1987) 
  3. Passoni LC, Cruz AT, Buffon R, Schuchardt U, J. Mol. Catal. A-Chem., 120, 117 (1997) 
  4. Yamanaka H, Hamada R, Nibute H, Nishiyama S, Tsuruya S, J. Mol. Catal. A-Chem., 178, 89 (2002) 
  5. Ehrich H, Berndt H, Pohl MM, Jahnisch K, Baerns M, Appl. Catal. A: Gen., 230(1-2), 271 (2002) 
  6. Kimura E, Sakonaka S, Machida R, Kodama M, J. Am. Chem. Soc., 104, 4255 (1982) 
  7. Ohtani T, Nishiyama S, Tsuruya S, Masai M, J. Catal., 155(1), 158 (1995) 
  8. Miyake T, Hamada M, Sasaki Y, Oguri M, Appl. Catal. A: Gen., 131(1), 33 (1995) 
  9. Okamura J, Nishiyama S, Tsuruya S, Masai M, J. Mol. Catal. A-Chem., 135, 133 (1998) 
  10. Passoni LC, Luna FJ, Wallau M, Buffon R, Schuchardt U, J. Mol. Catal. A-Chem., 134, 229 (1998) 
  11. Miyahara T, Kanzaki H, Hamada R, Kuroiwa S, Nishiyama S, Tsuruya S, J. Mol. Catal. A-Chem., 176, 141 (2001) 
  12. Miyake T, Hamada M, Niwa H, Nishizuka M, Oguri M, J. Mol. Catal. A-Chem., 178, 199 (2002) 
  13. Masumoto Y, Hamada R, Yokota K, Nishiyama S, Tsuruya S, J. Mol. Catal. A-Chem., 184, 215 (2002) 
  14. Sakai K, Matsumoto KJ, J. Mol. Catal., 67, 7 (1991) 
  15. Nomiya K, Yanagibayashi H, Nozaki C, Kondoh K, Hiramatsu E, Shimizu Y, J. Mol. Catal. A-Chem., 114, 181 (1996) 
  16. Kumar A, Kaspar J, Kumar A, J. Catal., 166(1), 108 (1997) 
  17. Bhaumik A, Mukherjee P, Kumar R, J. Catal., 178(1), 101 (1998) 
  18. Kumar R, Mukherjee P, Bhaumik A, Catal. Today, 49(1-3), 185 (1999) 
  19. Karakhanov EA, Filippova TY, Martynova SA, Maximov AL, Predeina VV, Topchieva IN, Catal. Today, 44(1-4), 189 (1998) 
  20. Nomiya K, Nemoto Y, Hasegawa T, Matsuoka S, J. Mol. Catal. A-Chem., 152, 55 (2000) 
  21. Lee CW, Lee WJ, Park YK, Park SE, Catal. Today, 61(1-4), 137 (2000) 
  22. He J, Xu WP, Evans DG, Duan X, Li CY, Microporous Mesoporous Mater., 44, 581 (2001) 
  23. Stockmann M, Konietzni F, Notheis JU, Voss J, Keune W, Maier WF, Appl. Catal. A: Gen., 208(1-2), 343 (2001) 
  24. Jing H, Guo ZY, Ma H, Evans DG, Duan X, J. Catal., 212(1), 22 (2002)