Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.1, 34-40, February, 2004
압력변화 특성치를 이용한 역청탄의 수소첨가 가스화반응 특성 연구
Study of Hydrogasification of Bituminous Coal with Pressure Change Properties
E-mail:
초록
110 mL 부피를 갖는 회분식반응기를 이용하여 수소첨가 가스화반응에서 석탄의 전환효율 향상에 관한 연구를 실시하였다. 실험에 사용한 석탄은 호주 노보산 유연탄이었으며 주 생성가스인 H2, CH4, CO, CO2 그리고 H2O의 조성은 GC를 이용하여 정량적으로 분석하였다. 수소가스의 압력감소 속도는 기상물 생성속도와 밀접한 관계가 있었으며 이러한 사실은 전환율변화의 결과를 통해 확인할 수 있었다. 탄소전환율과 기상물 생성속도느느 다양한 온도와 압력범위에서 측정되었으며 기상생성물 중의 메탄함량과 전환율은 온도와 압력증가에 따라 증가하였다. 일정수준까지의 수분첨가는 반응을 촉진시키나 일정수준이상에서는 반응을 억제함을 알 수 있었다. 담지된 모든 촉매가 반응효율 향상에 효과가 있는 것이 아니라 담지된 촉매와 석탄의 형태에 따라 상당한 차이가 발생하였으며, 유연탄을 사용한 수소첨가 가스화반응에서 최적의 촉매는 K2CO3이었다.
The enhancement of carbon conversion has been studied in hydrogasification of coal in a small batch reactor (reactor volume: 110 mL). Novo coal from austrailia was selected for the experiment. The product gas composition was determined quantitatively by GC for H2, CH4, CO, CO2 and H2O. It was found that pressure decrease rate of hydrogen gas was closely related to rate of gas production. This result was confirmed by the change of carbon conversion with time. Carbon conversion and gas production rate were measured over a various range of temperature and pressure. The methane content of gas products and carbon conversion rise with increase of temperature and pressure. The addition of water activates hydrogasification reaction until the proper level of water amount, but the water of the excess level inhibits the reaction. In case of loading of catalysts, all catalysts loaded to the coal did not give a positive effect in hydrogasification, but the catalytic effect depends on type of catalyst metals and coal. In the present hydrogasification of bituminous coal, K2CO3 catalyst was found to be the best.
- Chin G, Liu G, Dong Q, Fuel, 66, 356 (1983)
- Nahas NC, Fuel, 62, 1564 (1983)
- Ruby J, Johnson A, Ziock H, Lackner K, Zero Emission Coal Technologies-a Prudent man Approach to North American Energy Security, Proceeding of 21th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida, 4-7, March, 767 (2002)
- Anthony DB, Howard JB, AIChE J., 22(4), 625 (1976)
- Tomita A, Mahajan OP, Walker PL, Fuel, 56, 137 (1977)
- Li B, Mitchell SC, Snape CE, Fuel, 75, 1393 (1996)
- Suzuki T, Funaki M, Tanaka K, Okazaki N, Yamada T, Fuel, 75, 627 (1996)
- Wen CY, Huebler J, Ind. Eng. Chem. Process Des. Dev., 4(2), 142 (1965)
- Feldkirchner HL, Linden HR, Ind. Eng. Chem. Process Des. Dev., 2(2), 153 (1963)
- Suzuki T, Iwasaki J, Konno H, Yamada T, Fuel, 74(2), 173 (1995)
- U.S. Patent, 3,985,519 (1976)
- U.S. Patent, 3,847,567 (1974)
- Makino M, Toda Y, Fuel, 60, 321 (1981)
- Arendt P, Heek K, Fuel, 60, 779 (1981)
- Mckee DW, Spiro CL, Kosky PG, Lamby EJ, Fuel, 62, 217 (1983)
- Lang RT, Fuel, 65, 1324 (1986)
- Baker RTK, Lund CRF, Chludzinski JJ, J. Catal., 87, 255 (1984)
- Yamada T, Tomita A, Tamai Y, Homma T, Fuel, 62, 246 (1983)
- Suzuki T, Mishima M, Takahashi T, Watanabe Y, Fuel, 64, 66 (1985)
- Haga T, Nogi K, Amaya M, Nisiyama Y, Appl. Catal., 67, 189 (1991)