화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.9, No.6, 753-761, November, 2003
Important Factors on Carbon Dioxide Reforming of Methane over Nickel-Based Catalysts
E-mail:
Some factors such as catalyst, temperature, space velocity, feed CO2/CH4 ratio, H2O and/or O2 addition, have been examined for stable operation of carbon dioxide reforming of CH4 (CDR) in a fixed-bed reactor under atmospheric pressure. The Ni/Ce-ZrO2/θ-Al2O3 catalyst showed high activity and stability under all the conditions employed compared with Ni/MgAl2O4. This seems to be due to strong interactions between NiO and support and relatively abundant mobile oxygen species in the Ce-ZrO2 layer: the former would suppress carbon formation step and the latter would activate the carbon elimination step. The carbon deposition over the catalysts in CDR was drastically reduced with a slight increase of feed CO2/CH4 ratio or the addition of H2O in feed. The oxidation of CH4 and/or steam reforming of CH4 occurred simultaneously with carbon dioxide reforming of CH4, where drastic change of a H2/CO ratio was observed, when the feed was composed of CH4, CO2, H2O and/or O2.
  1. Ruckenstein E, Wang HY, Catal. Lett., 73(2-4), 99 (2001)
  2. Wang SB, Lu GQ, Millar GJ, Energy Fuels, 10(4), 896 (1996)
  3. Stagg SM, Romeo E, Padro C, Resasco DE, J. Catal., 178(1), 137 (1998)
  4. Edwards JH, Maitra AM, Fuel Process. Technol., 42(2), 269 (1995)
  5. Bradford MCJ, Vannice MA, Catal. Rev.-Sci. Eng., 41(1), 1 (1999)
  6. Noronha FB, Fendley EC, Soares RR, Alvarez WE, Resasco DE, Chem. Eng. J., 82(1-3), 21 (2001)
  7. Efstathiou AM, Kladi A, Tsipouriari VA, Verykios XE, J. Catal., 158(1), 64 (1996)
  8. Richardson JT, Paripatyadar SA, Appl. Catal., 61, 293 (1990) 
  9. Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF, Nature, 352, 225 (1991)
  10. Rostrup-Nielsen JR, Hansen JHB, J. Catal., 144, 38 (1993)
  11. Gadalla AM, Bower B, Chem. Eng. Sci., 43, 3049 (1988)
  12. Tomishige K, Himeno Y, Matsuo Y, Yoshinaga Y, Fujimoto K, Ind. Eng. Chem. Res., 39(6), 1891 (2000)
  13. Tang SB, Qiu FL, Lu SJ, Catal. Today, 24(3), 253 (1995)
  14. Frusteri F, Arena F, Calogero G, Torre T, Parmaliana A, Catal. Commun., 2, 49 (2001)
  15. Montoya JA, Romero-Pascual E, Gimon C, Del Angel P, Monzon A, Catal. Today, 63(1), 71 (2000)
  16. Kroll VC, Swaan HM, Mirodatos C, J. Catal., 161(1), 409 (1996)
  17. Rostrup-Nielsen JR, Curry HE, Howe RF, Natural Gas Conversion II, Elsevier: Amsterdam, 25 (1994)
  18. Choudhary VR, Uphade BS, Mamman AS, Appl. Catal. A: Gen., 168(1), 33 (1998)
  19. Choudhary VR, Rajput AM, Ind. Eng. Chem. Res., 35(11), 3934 (1996)
  20. Roh HS, Jun KW, Dong WS, Park SE, Baek YS, Catal. Lett., 74(1-2), 31 (2001)
  21. Roh HS, Dong WS, Jun KW, Park SE, Chem. Lett., 88 (2001)
  22. Li X, Chang JS, Tian M, Park SE, Appl. Org. Chem., 15, 109 (2001) 
  23. Roh HS, Jun KW, Baek SC, Park SE, Bull. Korean Chem. Soc., 23, 793 (2002)
  24. Roh HS, Jun KW, Baek SC, Park SE, Catal. Lett., 81(3-4), 147 (2002)
  25. Roh HS, Ph.D. Thesis, Yonsei University, Korea (2001)
  26. Roh HS, Jun KW, Dong WS, Baek SC, Park SE, J. Ind. Eng. Chem., 8(5), 464 (2002)
  27. Song C, Am. Chem. Soc. Div. Fuel Chem. Prepr., 45, 772 (2000)
  28. Bychkov VY, Krylov OV, Korchak VN, Kinet. Catal., 43, 94 (2002)
  29. Inui T, Ichino K, Matsuoka I, Takeguchi T, Iwamoto S, Pu SB, Nishimoto SI, Korean J. Chem. Eng., 14(6), 441 (1997)
  30. Kong SJ, Chung TS, Lee SJ, Yoon KJ, HWAHAK KONGHAK, 40(1), 16 (2002)
  31. Liu ZW, Roh HS, Jun KW, Park SE, Song TY, Korean J. Chem. Eng., 19(5), 742 (2002)
  32. Stagg-Williams SM, Noronha FB, Fendley G, Resasco DE, J. Catal., 194(2), 240 (2000)
  33. Hong SW, Oh SM, Park DW, Kim GJ, J. Ind. Eng. Chem., 7(6), 410 (2001)
  34. Roh HS, Jun KW, Park SE, J. Ind. Eng. Chem., 9(3), 261 (2003)