화학공학소재연구정보센터
Polymer, Vol.44, No.23, 7251-7264, 2003
Molecular orientation and relaxation in poly(butylene terephthalate)/polycarbonate blends
Rheo-optical Fourier-transform infrared (FTIR) spectroscopy is based on the simultaneous acquisition of stress-strain data and FTIR spectra on-line to the mechanical treatment of polymers and is frequently applied for the characterization of transient structural changes during deformation and stress-relaxation. In the present communication, this technique has been employed in order to investigate the distribution of molecular orientation and its relaxation in uniaxially drawn solution-cast films of semicrystalline partial miscible blends of poly(butylene terephthalate) (PBT) with polycarbonate (PC) containing 10, 30 and 50 wt% PC. The uniaxial deformation of these blend films having a PBT-crystallinity degree ranging from 31 to 12%, in unstretched blends, leads to a appreciable high segmental orientation for the crystalline PBT due to a structural transformation from lamellae to microfibrils. The formation of this fibrillar structure is attributed to non-reversibility of an extended phase with all-trans conformational sequence of the aliphatic segments of PBT, occurring during elongation. The rate of relaxation of this conformational transition, however, increases with increasing amorphous content in the blends. Also it is observed that even with increasing amorphous content in the PBT/PC blends the crystalline PBT shows significant orientation. In such cases, apart from the few lamellae which transform to microfibrils, it is suggested that a stress induced transformation of PBT chains in amorphous PBT-component to irreversible all-trans extended crystalline form also contributes to PBT crystalline orientation. In contrast with this high crystalline orientation, the amorphous PBT located in the interlamellar regions inside the PBT-spherulites show a lower orientation in blends as compared in pure PBT.On the other hand, an overall segmental orientation of PC chains in blends is of lower order which is attributed mainly to low stretching temperature compared to T-g of pure PC. The results are discussed in terms of the resulting spherulitic morphology and the temporary network formed by the elongated PBT and PC chains inside the interlamellar regions, in blends. (C) 2003 Published by Elsevier Ltd.