화학공학소재연구정보센터
Polymer, Vol.44, No.23, 7121-7129, 2003
Preparation and characterization of composite resin by vinyl chloride grafted onto poly(BA-EHA)/poly(MMA-St)
Crosslinked poly(butyl acrylate-co-2-ethylhexyl acrylate)/poly(methyl methacrylate-co-styrene) (ACR I) latex was synthesized by multi-stage emulsion polymerization. A series of grafting vinyl chloride (VC) composite latices were prepared by emulsion copolymerization in the presence of core-shell ACR I latex. The effects of ACR I amount and its core/shell ratio on particle diameters of the composite latices and mechanical properties of the prepared materials were investigated. The grafting efficiency (GE) of VC grafted onto ACR I increases with an increasing ACR I content. Transmission electron microscope (TEM) study indicates that ACR I latex particles have a regular core-shell structure obviously. However, when styrene content in the shell of ACR I is more than 70 percent of the shell by weight, ACR I latex particles have an irregular core-shell morphology like sandwich. The composite latex particles synthesized by core-shell ACR I latex grafting VC have a clear three-layered core-shell structure. Dynamic mechanical analysis (DMA) study reveals that the compatibility between ACR I and PVC is well improved. With increasing ACR I content, the loss peak in low temperature range for every composite sample becomes stronger and stronger and gradually shifts to a higher temperature. Scanning electron microscope (SEM) graphs showed that the fractured surface of the composite sample exhibited better toughness of the material. TEM graphs showed that ACR I was uniformly dispersed in the PVC matrix. (C) 2003 Elsevier Ltd. All rights reserved.