Inorganic Chemistry, Vol.42, No.21, 6589-6591, 2003
[CH3(CH2)(11)NH3]SnI3: A hybrid semiconductor with MoO3-type tin(II) iodide layers
The organic-inorganic hybrid [CH3(CH2)(11)NH3]SnI3 presents a lamellar structure with a Sn-I framework isotypic to that of MoO3. The SnI3- layer consists of edge and corner-sharing SnI6 octahedra in which one of the six Sn-I bonds is distinctly elongated (e.g., 3.62 Angstrom), indicating lone-pair stereoactivity for the Sn(II) atom. The overall electronic character remains comparable with that of the well-studied SnI42--based perovskite semiconductors, such as [CH3(CH2)(11)NH3](2)SnI4, with a red-shifted and broadened exciton peak associated with the band gap, apparently due to the increased dimensionality of the Sn-I framework. The title compound offers, aside from the hybrid perovskites, a new type of solution-processable Sn-I network for potential applications in semiconductive devices.