화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.37, No.2, 262-269, April, 1999
비용매 유도 상전이법에 의한 비대칭 폴리이미드막 제조시 물리적 인자의 영향 및 기체투과특성
Effects of Physical Factors in Asymmetric Polyimide Membranes Preparation by Nonsolvent Induced Phase Inversion Method and Gas Permeation Properties
초록
PMDA및 BTDA을 기본으로 하는 비대칭 폴리이미드막을 제조하였다. 이때 고분자 삼상계에서의 물리적인 요인 즉, 용해도 변수 차이나 표면장력에 따른 막의 기공 변화를 고찰하였고, 기체투과특성을 알아보았다. 폴리이미드막의 기공성 조절은 비용매 유도 상전이 공정에 의해 행하였다. 제조된 비대칭 폴리이미드막은 약 0.512-1.239 cm3/g 범위의 pore specific volume 값을 보였다. 고분자 삼상계에서 용해도 변수 차이나 표면장력이 막의 기공 형성에 영향을 주며 막 표면층과 하부층의 두 가지 기공형성 메카니즘에 중요한 요인이 되는 것을 알 수 있었다. 또한 기체투과실험에 있어서 질소 투과량의 경우 0.07-0.39×10-7mol/m2·Pa·s의 범위를 보였다. BTDA 폴리이미드막의 경우 본 실험에 쓰인 세 가지 diamine에 관계없이 투과량은 PMDA폴리이미드막에 비해 낮은 수치를 나타내었고, diamine종류에 있어서는 본 실험에서 사용한 dianhydride의 종류에 관계없이 ODA>>1,4PDA >1,3PDA의 순서로 투과량이 감소하는 경향을 나타내었다.
Formation of asymmetric polyimide membrane based on PMDA and BTDA was investigated and pore variation and gas permeation properties of membranes were researched according to physical factors : solubility parameter difference and surface tension. Control of pore formation was performed by nonsolvent induced phase inversion process. The range of pore specific volume of prepared asymmetric polyimide membrane was 0.512-1.239 cm3/g. It was found that membrane pore formation was determined by solubility parameter difference or surface tension in ternary phase polymer system. The formation mechanism of surface layer and sub-layer was also affected by physical factors in ternary polymer system. The permeance of nitrogen gas 0.07-0.39×10-7mol/m2 ·Pa·s. The gas flux of BTDA-polyimide membranes was lower than that of PMDA-polyimide. Permeation rate was decreased with ODA>>1,4PDA>1,3PDA polyimide in any of dianhydrides.
  1. Wood AS, Mod. Plast. Int., June, 26 (1989)
  2. Sroog CE, J. Polym. Sci. Macromol. Rev., 11, 161 (1976) 
  3. Coleman MR, Koros WJ, J. Membr. Sci., 50, 285 (1990) 
  4. Yamamoto H, Mi Y, Stern SA, Clair AK, J. Polym. Sci. B: Polym. Phys., 28, 2291 (1990) 
  5. Chun KY, Kim HS, Hen HS, Joe YI, J. Korean Ind. Eng. Chem., 9(2), 306 (1998)
  6. Loeb S, Sourirajan, ACS Adv. Chem. Ser., 38, 117 (1962)
  7. Kesting RE, J. Appl. Polym. Sci., 41, 2793 (1990)
  8. McHugh AJ, Tsay CS, J. Appl. Polym. Sci., 46, 2011 (1992) 
  9. Mchugh AJ, Miller DC, J. Membr. Sci., 105(1-2), 121 (1995) 
  10. Hatori H, Yamada Y, Shiraishi M, J. Appl. Polym. Sci., 57(7), 871 (1995) 
  11. Haraya K, Hwang ST, J. Membr. Sci., 62, 165 (1991) 
  12. Beaman RG, J. Polym. Sci., 9(5), 470 (1952) 
  13. Chun KY, Seo JC, Han HS, Joe YI, Theor. Appl. Chem. Eng., 2, 2539 (1996)
  14. Chun KY, Kim HS, Han HS, Joe YI, Theor. Appl. Chem. Eng., 3, 1345 (1997)
  15. Chun KY, Han HS, Joe YI, HWAHAK KONGHAK, 35(6), 928 (1997)
  16. Barton FM, "Handbook of Solubility Parameters and Other Cohesive Parameters," CRC Press, Inc., Boca Raton, Florida (1983)
  17. Fedors RF, Polym. Eng. Sci., 14, 147 (1974) 
  18. van Krevelen DW, "Properties of Polymers; Their Correlation with Chemical Structure, Their Numerical Estimation and Prediction from Additive Group Contributions," 3rd Ed., Elsevier, Amsterdam (1990)
  19. Kang YS, Kim HY, Kim UY, J. Membr. Sci., 60, 219 (1991) 
  20. Kim JH, Lee KH, J. Membr. Sci., 138(2), 153 (1998) 
  21. Cheng JM, Wang DM, Lin FC, Lai JY, J. Membr. Sci., 109(1), 93 (1996) 
  22. Lai JY, Lin FC, Wang CC, Wang DM, J. Membr. Sci., 118(1), 49 (1996) 
  23. Lin FC, Wang DM, Lai JY, J. Membr. Sci., 110(1), 25 (1996) 
  24. Smolder CA, Reuvers AJ, Boom RM, Wienk M, J. Membr. Sci., 73, 259 (1992) 
  25. Stern SA, J. Membr. Sci., 94, 1 (1994)
  26. Ghosh MK, Mittal KL, "POLYIMIDES, Fundamental and Applications," Marcel Dekker, New York (1996)