화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.37, No.2, 198-204, April, 1999
입상활성탄과 활성탄소섬유에 의한 수용액상에서의 Cr(Vl), Pb(II), Ni(Il)의 흡착특성
Adsorption Characteristics of Cr(Vl), Pb(II) and Ni(II) by Granular Activated Carbon and Activated Carbon Fiber in Aqueous Solution
초록
입상활성탄과 활성탄소섬유에 의한 수용액상에서의 크롬(VI), 납(II), 니켈(II)의 흡착특성을 연구하였다. 입상활성탄의 경우 평형흡착량은 크롬, 납, 니켈 순이었으며, 활성탄소섬유의 경우 평형흡착량은 납, 크롬 니켈의 순이었다. 활성탄소 섬유가 활성탄에 비해 중금속이온에 대한 훨씬 높은 흡착능을 보여주었으며, 흡착속도 또한 활성탄소섬유의 세공특성으로 인해 매우 빨랐다. 흡착에 영향을 주는 인자 중 pH에 의한 변화에서 크롬, 납, 니 켈의 최적 pH는 3-4, 11, 12이었으며, 활성탄소섬유는 최적 pH가 납, 크롬, 니켈에 대해 각각 8.0, 3.0, 9.0근방이었다. 입상활성탄과 활성탄소섬유 두 가지 흡착제 모두에서 평형흡착량은 Langmuir등온식으로 잘 표현할 수 있었다
The adsorption characteristics of Cr(VI), Pb(II), Ni(II) in aqueous solution using activated carbon and activated carbon fiber has been studied. In case of activated carbon, the equilibrium adsorbed amount of Cr(VI) showed the largest value and followed by Pb(II) and Ni(II) respectively in a continuous stirred batch system. However, in case of activated carbon fiber, the equilibrium adsorbed amount decreased in order of Pb(II), Cr(VI) and Ni(II). The activated carbon fiber showed much higher adsorption capacity and adsorption rate for the heavy metal ions than the granular activated carbon. In the activated carbon, the maximum adsorption amount of Cr(VI) occurred near pH 3-4, while that of Pb(II) and Ni(II) for Pb(ll), Cr(VI) and Ni(ll), respectively. The Langmuir isotherm agreed well with experimental data for both activated carbon and activated carbon fiber.
  1. Klaassen CD, "Toxicology," Memillau Publishing Company (1986)
  2. McAnally SL, Benefield, Reed RB, Sep. Sci. Technol., 19, 191 (1984)
  3. Periasamy K, Namasivayam C, Ind. Eng. Chem. Res., 33(2), 317 (1994) 
  4. Taylor RM, Kuennen RW, Environ. Prog., 13, 65 (1994)
  5. Reed BE, Arunachalam S, Thomas B, Environ. Prog., 13, 60 (1994)
  6. Jung CH, Jung HH, Moon JK, Oh WZ, Ryu SK, HWAHAK KONGHAK, 35(4), 538 (1997)
  7. Shim JW, Jung HH, Jung CH, Oh WZ, Ryu SK, HWAHAK KONGHAK, 35(2), 162 (1997)
  8. Shim JW, Lee SM, Ryu SK, HWAHAK KONGHAK, 36(1), 68 (1998)
  9. James RO, Healey RW, J. Colloid Interface Sci., 40, 42 (1997)
  10. Huang CP, Blankenship DW, Water Res., 18, 37 (1984) 
  11. Suzuki M, "Adsorption Engineering," Kodansha (1990)
  12. Jayson GG, Lawless TA, J. Colloid Interface Sci., 86, 397 (1982) 
  13. Ryu SK, Chem. Ind. Technol., 12(1), 6 (1994)
  14. Huang CP, Wu MH, J. Water Pollut. Control Fed., 47, 2437 (1975)
  15. Young GT, Chessick JJ, J. Phys. Chem., 60, 394 (1956) 
  16. Shaw DJ, "Introduction to Colloid Surface Chemistry," 2nd ed., Butterworths (1970)
  17. Zettlemoyer AC, Ind. Eng. Chem., 57, 27 (1965) 
  18. Huang CP, Wu MH, Water Res., 11, 673 (1977) 
  19. Reed BE, J. Environ. Eng., 121(9), 653 (1995) 
  20. Corapciouglu MO, Huang CP, Water Res., 21, 1031 (1987) 
  21. Brian ER, Sujith KN, Sep. Sci. Technol., 27, 1985 (1992)
  22. Matsumoto MR, Kyles JH, Chem. Eng. Commun., 86, 1 (1989)
  23. Hirokazu O, Toshiyuki N, Tetufumi K, Tanso, 176, 20 (1997)