Journal of Power Sources, Vol.124, No.1, 213-220, 2003
On the use of voltammetric methods to determine electrochemical stability limits for lithium battery electrolytes
In previous studies a novel amphiphilic co-polymer was developed for use in lithium-ion batteries. In order to evaluate the electrochemical stability of that electrolyte and compare it with others, a voltammetric method was applied on a set of electrolytes with different salts, solvents and polymers. However, initially the voltammetric methodology was studied. Platinum was found to be the most suited electrode material, experiencing no significant interfering reactions and a proper diffusion-controlled kinetic behaviour when sweep rate was varied. Furthermore, the influence on the voltammograms of adding water traces to the electrolytes was studied. It could be established that the oxidation peak around 3.8 V versus Li was related to water reactions. It was concluded that quantitative voltage values of the stability limits were difficult to assess using voltammetry. On the other hand, the method seemed well suited for comparison of electrolytes and to investigate the influences of electrolyte components on the stability. The voltammetric results varied little between the different electrolytes evaluated and the anodic and cathodic limits, as defined here, were in the range of I and 4.5 V vs. Li, respectively. Although the novel polymer did not affect the stability limit significantly it seemed to promote the breakdown reaction rate in all electrolytes tested. Furthermore, the use of LiTFSI salt reduced the stability window. (C) 2003 Elsevier B.V. All rights reserved.