화학공학소재연구정보센터
Journal of Power Sources, Vol.119, 28-33, 2003
A new approach for the preparation of anodes for Li-ion batteries based on activated hard carbon cloth with pore design
We demonstrate herein the possibility to prepare carbon anodes for Li-ion batteries using simple carbonized polymeric precursors such as cotton and phenolic cloths. Activation by controlled oxidation forms highly porous carbons whose electrochemical activity in Li salt solutions is mostly an irreversible reduction of solution species and double layer charging. Treating these porous carbons by chemical vapor deposition (CVD) of carbon on their surfaces, closes the pores in a way that they can insert Li-ions, but not solution species. These general carbon engineering processes form new carbons with nanoscopic, selectively closed pores, which can serve as highly reversible anode materials for Li-ion batteries, with relatively low irreversible capacity. The capacity of these electrodes depends on the nature of the carbon CVD process. This paper describes the scheme for carbon engineering, gas adsorption measurements that demonstrate the impact of the carbon CVD process, and the relevant changes in the structure of the pores and some preliminary electrochemical measurements in non-aqueous Li salt solutions. (C) 2003 Elsevier Science B.V. All rights reserved.