- Previous Article
- Next Article
- Table of Contents
Journal of Polymer Science Part A: Polymer Chemistry, Vol.41, No.15, 2412-2423, 2003
Fibrillar structure of resorbable microblock copolymers based on 1,5-dioxepan-2-one and epsilon-caprolactone
The copolymerization of 1,5-dioxepan-2-one (DXO) and E-caprolactone, initiated by a five-membered cyclic tin alkoxide initiator, was performed in chloroform at 60 degreesC. Copolymers with different molar ratios of DXO (25, 40, and 60%) were synthesized and characterized. C-13 NMR spectroscopy of the carbonyl region revealed the formation of copolymers with a blocklike structure. Differential scanning calorimetry measurements showed that all the copolymers had a single glass transition between -57 and -49 degreesC and a melting temperature in the range of 30.1-47.7 degreesC, both of which were correlated with the amount of DXO. An increase in the amount of DXO led to an increase in the glass-transition temperature and to a decrease in the melting temperature. Dynamic mechanical thermal analysis measurements confirmed the results of the calorimetric analysis, showing a single sharp drop in the storage modulus in the temperature region corresponding to the glass transition. Tensile testing demonstrated good mechanical properties with a tensile strength of 27-39 MPa and an elongation at break of up to 1400%. The morphology of the copolymers was examined with polarized optical microscopy and atomic force microscopy; the films that crystallized from the melt showed a short fibrillar structure (with a length of 0.05-0.4 mum) in contrast to the untreated solution-cast films. (C) 2003 Wiley Periodicals, Inc.
Keywords:1,5-dioxepan-2-one (DXO);poly(epsilon-caprolactone);thermal properties;mechanical properties;morphology