화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.263, No.2, 580-589, 2003
Wetting behavior of flax fibers as reinforcement for polypropylene
The wetting behavior of several flax (cellulose as reference) and polypropylene fibers is characterized by measuring the wetting rates (penetration velocities) of a series of liquids using the capillary rise technique. This present paper aims to provide a deeper understanding of the complex nature of natural fibers and their surface properties. The fiber surface tensions are estimated from plots of the normalized wetting rate as a function of the surface tension of the liquids assuming, in analogy to Zisman's method, that the maximum of the normalized wetting rate corresponds to the solid surface tension. The estimated surface tensions of the investigated flax fibers indicate that all the fibers are quite "hydrophobic." The method used to separate the fibers from the rest of the plants has a large influence on the estimated fiber surface tensions. In the case of polypropylene (PP) fibers, the estimated surface tension corresponds well with literature data. Grafting small amounts of maleic acid anhydrite (MAH) onto the PP surfaces will not affect the wetting behavior and, therefore, the surface tension, whereas grafting larger amounts (10 wt%) of MAH causes the polymer surface tension to increase significantly. Additional pH-dependent zeta-potential measurements show that even the "pure" PP-fibers contain acidic surface functions, possibly due to further processing at elevated temperatures (thermal degradation or other aging processes). (C) 2003 Elsevier Inc. All rights reserved.