Journal of Colloid and Interface Science, Vol.262, No.2, 456-465, 2003
Self-assembly and morphology of gel networks in 1,3 : 2,4-bis-O-(p-methylbenzylidene)-D-sorbitol/n-dibutylphthalate
We investigated the self-assembling structure of the 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol (PDTS)/n-dibutylphthalate (DBP) system in the parameter space of temperature T and solute concentration Phi(PDTS). Optical microscopic studies revealed that the phase diagram can be divided into four regions. In region I at high T the system is a homogeneous solution. In region 11 at lower T and low Phi(PDTS), the system still has fluidity but has microgels having spherulitic texture of PDTS crystallites. Regions III and IV at even lower T but higher Phi(PDTS) are in a gel state. In region 111, the PDTS forms volume-filling spherulites due to the solid-liquid phase transition of the saturated PDTS solutions. In region IV at the lowest T, both the liquid-liquid phase-separation process and the solid-liquid transition of the PDTS are involved in the self-assembling processes. In this region a bicontinuous phase-separated structure is first formed by liquid-liquid phase separation via spinodal decomposition (SD). The subsequent solid-liquid transition of the PDTS in the PDTS-rich region forms percolating crystalline fibrils rather than spherulites. The formation of the crystalline fibrils pins further growth of the bicontinuous structure via SD. (C) 2003 Elsevier Science (USA). All rights reserved.
Keywords:physical gels;sol-gel transition;solid-liquid phase transition;spinodal decomposition;complex liquids