화학공학소재연구정보센터
Macromolecular Research, Vol.11, No.6, 451-457, December, 2003
Plasma Protein Adsorption to Anion Substituted Poly(vinyl alcohol) Membranes
E-mail:
Anion-substituted poly(vinyl alcohol) (PVA) membranes, carboxymethylated PVA (C-PVA), and sulfonated PVA (S-PVA) were prepared and the effects of these substitutions on the plasma protein adsorption were studied by one- and two-dimensional gel electrophoresis and immunoblotting. When Cuprophane was used as a negative control, the amount of total proteins bound to samples decreased in the order Cuprophane > PVA > C-PVA > S-PVA, which we attribute to the effects of the surface characteristics of the samples, such as their surface tensions and electrostatic properties, on the adsorption of proteins to the surfaces of the materials. The results revealed that albumin was the most abundant protein in all the samples. The proportion of adsorbed fibrinogen to S-PVA exceeded those of PVA and C-PVA, whereas S-PVA exhibited the lowest IgG adsorption affinity among the samples we studied.
  1. Andrade JD, Principles of Protein Adsorption in Surface and Interfacial Aspects of Biomedical Polymers, Plenum Publishing, New York, pp. 1-80 (1985)
  2. Horbett TA, Protein Adsorption on Biomaterials in Biomaterials: Interfacial Phenomena and Applications, S.L. Cooper and N.A. Peppas, Eds., ACS Advances in Chemistry Series, ACS, Washington D.C., vol. 199, pp. 233-244 (1982)
  3. Mulzer SR, Brash JL, J. Biomed. Mater. Res., 23, 1483 (1989) 
  4. Parzer S, Balcke P, Mannhalter C, J. Biomed. Mater. Res., 27, 455 (1993) 
  5. Chun HJ, Kim JJ, Kim KY, Polym. J., 22, 347 (1990) 
  6. Finch A, Poly(vinyl alcohol)-Development, John Wiley & Sons, Ltd., New York (1992)
  7. Chun HJ, Kim JJ, Lee SH, Kim KY, Kim UY, Polym. J., 22, 477 (1990) 
  8. Nam SY, Chun HJ, Lee YM, J. Appl. Polym. Sci., 72(2), 241 (1999) 
  9. Khang G, Choi MK, Rhee JM, Lee SJ, Lee HB, Iwasaki Y, Nakabayashi N, Ishihara K, Korea Polym. J., 9(2), 107 (2001)
  10. Hong KC, Kim J, Bae JY, Korea Polym. J., 9(5), 253 (2001)
  11. Owens D, J. Appl. Polym. Sci., 13, 1711 (1969)
  12. Min SK, Kim JH, Chung DJ, Korea Polym. J., 9(3), 143 (2001)
  13. Berger M, Broxup B, Sefton MV, J. Mater. Sci.- Mater. Medicine, 5, 622 (1994) 
  14. Tanzi MC, Muttoni M, Fumero R, Scuri S, Cairo G, Polymers in Medicine III, C. Migliaresi, Ed., Elsevier Science Publishers B.V., Amsterdam, pp. 99-110 (1987)
  15. Wessel D, Flugge UI, Anal. Biochem., 138, 141 (1984) 
  16. Laemmli UK, Nature, 227, 680 (1990) 
  17. Galletti PM, Colton CK, Lysaght MJ, The Biomedical Engineering Handbook, J.D. Bronzino, Ed., CRC Press, Inc., pp. 1898-1922 (1995)
  18. Ikada Y, Iwata H, Horii F, Matsunaga T, Tanigushi M, Suzuki M, J. Biomed. Mater. Res., 15, 697 (1981) 
  19. Duncan AC, Sefton MV, Brash JL, Biomaterials, 18, 1585 (1997) 
  20. Lee JH, Kim HW, Pak PK, Kim SS, Lee HB, Korea Polym. J., 2(1), 32 (1994)
  21. Han DK, Park KD, Ryu GH, Kim UY, Min BG, Kim YH, J. Biomed. Mater. Res., 30, 23 (1996) 
  22. Kiremitci M, Gok E, Ates S, J. Biomater. Sci.-Polym. Ed., 6, 425 (1994)
  23. Vroman L, Bull. N.Y. Acad. Med., 64, 352 (1988)
  24. Slack SM, Bohnert JL, Horbett TA, Ann. N.Y. Acad. Sci., 516, 223 (1987) 
  25. Gessner A, Lieske A, Paulke BR, Muller RH, Eur. J. Pharm. Biopharm., 54, 165 (2002) 
  26. Grasel TG, Cooper SL, J. Biomed. Mater. Res., 23, 311 (1989)
  27. Santerre JP, Vanderkaup NH, Brash JL, J. Biomed. Mater. Res., 26, 39 (1992) 
  28. Breemhaar W, Brinkman E, Elleus DJ, Bengeling T, Bantjes A, Biomaterials, 5, 269 (1984) 
  29. Harfenist EJ, Packham MA, Mustard JF, Blood, 64, 1163 (1984)
  30. Sugiyama T, Okuma M, Ushikubi F, Seusaki S, Kanaji K, Uchino H, Blood, 69, 1712 (1987)
  31. Wettero J, Askeudal A, Bengtsson T, Tengvall P, Biomaterials, 23, 981 (2002) 
  32. Roitt I, Brostoff J, Male D, Immunology, 5th Edition, Mosby International Ltd., London, pp. 43-59 (1998)