화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.7, 968-972, November, 2003
PUD pilot에서 자동점도 측정을 이용한 교반효과에 관한 연구
Stirring Effect on Dispersion with Automatic Viscosity Monitoring for PUD Pilot
E-mail:
초록
8 L pilot 반응기에서 isophorone diisocyanate (IPDI), polycarbonate diol (PCD), dimethylol propionic acid (DMPA)가 주성분인 프리폴리머로부터 수분산성 폴리우레탄을 제조할 때 프리폴리머 합성단계의 종말점을 반응기 교반모터에 걸리는 부하 변화와 점도의 관계로부터 확인하였다. 수분산과정의 교반속도에 따른 점도 변화 및 최종 분산체의 입자크기를 측정하고, 필름성형시의 수분 증발속도와 성형된 필름의 열적 성질을 측정하였다. 물을 투입하여 수분산하면 처음에는 점도가 증가하다가 일정 시간이 지난 후 점도가 감소하였다. 교반속도를 증가시키면 수분산 초기의 점도증가 폭이 감소하였으며 분산체의 입자크기도 감소하였다. 분산체의 입자 크기가 작을 수록 필름 성형시의 수분 증발속도가 감소하였다. 그러나 필름의 열분해 온도와 Tg는 교반속도에 거의 영향을 받지 않았다.
Polyurethane dispersion (PUD) was prepared with polycarbonate diol (PCD), isophorone diisocyanate (IPDI) and dimethylol propionic acid (DMPA) in a 8 L pilot reactor. The end point of prepolymerization step was measured by the change in the torque of the stirring motor which is related to the viscosity of reaction mixtures. The changes in the viscosity of reaction mixtures, particle size distributionof PUD, water evaporation rate in film casting and thermal properties of cast film were investigated as varying the stirring rate in dispersion step. During the dispersion step, the viscosity of reaction mixture increased initially, and then decreased sometime later. The extent of viscosity increase and particle size of PUD decreased with the stirring rate. As the particle size became smaller, the evaporation rate decreased. But thermal properties of cast film such as thermal decomposition temperature and glass temperature were not affected by the particle size of PUD.
  1. Oertel G, Polyurethane Handbook, 2nd ed., Hanser, Munchen (1993)
  2. Martens CR, Waterborne Coatings: Emulsion and Water Soluble Paint, Van Nostrand Company, New York (1997)
  3. Szycher M, Szycher's handbook of Polyurethane, Book News Inc., Portland (1999)
  4. Lambourne R, Paint and Surface Coatings: Theory and Practice, John Wiley and Sons, New York (1987)
  5. David DJ, Staley HB, Analytical Chemistry of the Polyurethanes, High Polymer Series, X VI, Part III, Wiley-Interscience, New York (1969)
  6. Kim JK, Cho HK, Noh ST, Kang SC, J. Korean Ind. Eng. Chem., 13(8), 815 (2002)
  7. Chen SA, Hsu JS, Polymer, 34, 2776 (1993) 
  8. Jhon YK, Cheong IW, Kim JH, Colloids Surf. A: Physicochem. Eng. Asp., 179, 71 (2001) 
  9. Lee SY, Lee JS, Kim BK, Polym. Int., 42, 67 (1997) 
  10. Ahn JB, The Molecular Weight Variation of NCO-Prepolymer with Reaction Condition in Polyurethane Anionomer Dispersion, M.S. Thesis Hanyang Univ., Seoul, Korea (1995)
  11. Seborg DE, Edgar TF, Mellichamp DA, Process Dynamics and Control, John Wiley and Sons, New York, 538 (1989)
  12. Dieterich D, Prog. Org. Coat., 9, 281 (1981) 
  13. Yang CH, Yang HJ, Wen TC, Wu MS, Chang JS, Polymer, 40(4), 871 (1999)