Chemical Engineering & Technology, Vol.26, No.8, 862-868, 2003
Two-phase flow with mass transfer in bubble columns
Bubble columns are widely used in the chemical and biochemical industries. In these reactors a gaseous phase is dispersed into a continuous liquid phase thus the rising bubble swarm induces a circulating flow field. For the dimension of these reactors the local interfacial area and the residence time of the liquid and the gaseous phase are key parameters. In this paper an Euler-Euler approach is used to calculate the flow field in bubble columns numerically. Therefore a transport equation for the mean bubble volume based on a population balance equation approach is coupled with the balance equations for mass and momentum. The calculations are performed for three-dimensional, instationary flow fields in cylindrical bubble columns considering the homogeneous and the heterogeneous flow regime. For the interphase mass transfer the physical absorption of the gaseous phase into the liquid is assumed. The back mixing in the gaseous and liquid phase is calculated from the local and time dependent concentration of a tracer.