Polymer, Vol.44, No.17, 4805-4815, 2003
Coordination of Cu(II) and Ni(II) in polymers imprinted so as to optimize amine chelate formation
Molecular imprinting has become an established technique. However, little was done on direct investigation of the sorbents produced. In the present work, en ESR method was used for the investigation of the complex formation processes within the sorbents imprinted with copper(II) and nickel(II). The sorbents were synthesized from a mixture of linear low molecular weight polyethyleneimine oligomers. The composition, structure and distribution of complexes in the resin phase were investigated. The effects of the synthesis conditions, loading degree and water content were examined. The presence of certain copper complexes was found to be a convenient characteristic of the imprinting efficiency. The optimum synthesis conditions for obtaining sorbents imprinted with copper(II) or nickel(II) were identified. The imprinting results in the improvement of the stability of the complexes and the selectivity and working capacity of the sorbents. The imprinted samples are also characterized by a more even distribution of chelating sites. The synthesis conditions and loading by ions allow for the regulation of the ratio between individual complexes and magnetic associates in the resin phase. This is a critical point on the future use of the metal containing imprinted sorbents as catalysts. (C) 2003 Published by Elsevier Science Ltd.