Journal of Physical Chemistry B, Vol.107, No.32, 8232-8240, 2003
Hybrid block copolymer micelles with partly hydrophobically modified polyelectrolyte shells in polar and aqueous media: Experimental study using fluorescence correlation spectroscopy, time-resolved fluorescence, light scattering, and atomic force microscopy
The structure and behavior of amphiphilic block copolymer micelles with partly hydrophobically modified polyelectrolyte shells were studied in 1,4-dioxane-water mixtures and in purely aqueous media by a combination of several experimental techniques. The studied hybrid micelles are formed by 20 wt % of a modified polystyrene-block-poly(methacrylic acid), PS-N-PMA-A, double-tagged by one pendant naphthalene between blocks and one anthracene at the end of the PMA block and by 80% of either nontagged PS-PMA or polystyrene-block-poly(ethylene oxide), PS-PEO. The cores of micelles contain pure PS, while the shells contain either PMA-A/PMA or PMA-A/PEO mixed chains. The double tagging by naphthalene and anthracene allows for a nonradiative energy transfer (NRET) study aimed at the estimate of donor-trap distances within one micelle. The fluorometric study suggests that the hydrophobic anthracene tag at the end of shell-forming PMA block tries to avoid the aqueous medium and is buried in the shell, forcing the PMA chain to loop back toward the core. Since the stability of hybrid micellar solutions is guaranteed by favorable interactions of stretched unmodified shell-forming chains (which are in excess in the system) with the aqueous solvent, the reduced entropy of the loop-forming chains does not play such an important role as in micelles with 100% tagging. Hence, we conclude that a higher fraction of the anthracene-tagged chains may return closer to the core-corona interface than in the case of 100% tagged micelles.