화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.36, No.4, 491-495, August, 1998
활성탄소섬유 제조시 활성체(CO2, 증기)에 따른 영향
Effects on Activating Agents(CO2, steam) as Preparating of Activated Carbon Fibers
초록
활성탄소섬유(Activated Carbon Fiber : ACF)들은 사용된 원료물질과 활성화조건에 따라 서로 다른 활성화 거동과 흡착 특성을 나타낸다. 따라서, 본 실험에서는 PAN과 핏치계 활성탄소섬유를 두 가지 활성화 기체(CO2, 증기)의 공급속도와 활성화 온도에 따라 활성탄소섬유를 제조하였다. 핏치계 활성탄소섬유들은 대부분이 미세공으로 구성되어 높은 비표면적(2,500m2/g이상)을 나타내었다. 활성제로서 증기가 반응성이 이산화탄소보다 약 3배 빨랐으며 핏치계 탄소섬유가 활성제에 대한 반응성이 더 컸다. 증기와 이산화탄소에 의한 평균세공지름의 범위는 약 15-l9Å과 12-l4Å이며, 이것은 이산화탄소에 의해 활성화된 활성탄소섬유가 더 작고 균일한 미세공특성을 나타냄을 의미한다. 우수한 활성탄소섬유를 제조하기 위한 활성화 최적 조건은 원료물질로 핏치계 탄소섬유를, 온도는 낮을수록(800℃), 활성제로는 이산화탄소를, 이산화탄소의 공급속도는 적절한 영역(38 ml/hr)임을 알 수 있었다.
Activated carbon fibers(ACF) show different activation behaviors and adsorptive properties, which depend on the activating conditions and starting materials used. So, PAN- and pitch-based activated carbon fibers were prepared by flow rates of varying the activating agents(CO2, and steam) and temperatures in activation process. The pitch-based activated carbon fibers were microporous materials of high specific surface areas(>2,500 m2/g). The reactivity in steam as activating agent was about three times faster than in CO2, the reactivity of pitch-based carbon fibers as starting materials was higher than PAN-based carbon fibers. The ranges of average pore diameter for steam and CO2 were about 15-17Å and 11-13Å, respectively. It implies that smaller and more uniform micropores are developed in CO2. Optimum conditions of the activation process for preparing high quality ACF are pitch based carbon fiber as starting material, lower temperature(800℃), CO2 as activating agent, flow rate of 38 ml/hr.
  1. Bansal RC, Donnet JB, Stoekcli HF, "Active Carbon," New York, p. 14 (1988)
  2. Walker PL, Rusinko F, Austin LG, "In Advances in Catalysis," Academic Press, New York, Vol. XI, p. 133 (1959)
  3. Henning GR, Chem. Phys. Carbon, 2, 33 (1966)
  4. Kuhl H, Kashani-Motlagh MM, Muhlen HJ, van Heek KH, Fuel, 71, 879 (1992) 
  5. Tomkov K, Siemieniewska T, Czechowski F, Jankowska A, Fuel, 56, 121 (1977) 
  6. DeGroot WF, Richards GN, Carbon, 27, 247 (1989) 
  7. Lu GQ, Do DD, Carbon, 30, 21 (1992) 
  8. Ryu SK, Jin H, Gondy D, Pusset H, Ehrburger P, Carbon, 31, 841 (1993) 
  9. Wigmans, Carbon, 27, 13 (1989) 
  10. Brunauer S, Deming LS, Deming WS, Teller E, J. Am. Chem. Soc., 62, 1723 (1940) 
  11. Everett DJ, Powl JC, Faraday Trans. I, 72, 619 (1976)
  12. Cazorla-Amoros D, Ribes-Perez D, Roman-Martenez MC, Linares-Solano A, Carbon, 34, 869 (1996)