화학공학소재연구정보센터
Polymer(Korea), Vol.27, No.3, 255-264, May, 2003
세팔 별모양 폴리스타이렌 사슬의 팽창에 대한 만능 환산 온도 파라미터의 적용
Application of Universal Scaled Reduced Temperature Parameter to the Three-Arm Star Polystyrene
E-mail:
초록
세팔 별모양 폴리스타이렌 (PS, Mw=2.80×10(5), 2.49×10(6) g/mol)의 여러 종류의 사슬 크기를 t-decalin 용액의 온도 20∼70 ℃ 사이에서 점성도법, 레이저 광산란법을 이용하여 측정하였다. 별모양 고분자들의 팽창이 만능성을 갖기 위하여서는 그들 자신의 교란되지 않은 회전 반경 RG,Br,o이 포함된 (N/RG,Br,o(2))(3/2) τ/τC 파라미터가 사용될 것으로 예측하였으나, 실험 결과는 오히려 선형 폴리스타이렌 고분자의 교란되지 않은 회전 반경이 사용된 (N/RG,Li,o(2))(3/2) τ/τC 파라미터가 보다 우수한 만능성을 보여 주었다. 이러한 이유는 가지 효과가 τ/τC(=[(T-θTc)/θTc]/[(θTc-Tc)/Tc])부분에서 이미 반영되어 척도 상수 N/RG,o(2) 부분에서는 나타나지 않는 것으로 생각되어진다. 여기서 N은 고분자 사슬을 이루고 있는 단량체의 개수, θTc는 고분자의 분자량이 무한대일 때의 임계 용액 온도로써의 θ온도를 각각 의미한다.
Various chain sizes of 3-arm star polystyrenes (PS, Mw=2.80×10(5), 2.49×10(6) g/mol) in t-decalin solution were measured at the temperature range of 20∼70 ℃ by means of viscometry and laser light scattering. In order to show universality in the expansion factor of 3-arm star polymer, it was expected that (N/RG,Br,o(2))(3/2) τ/τC would be used as an universal parameter, where RG,Br,o was the unperturbed radius of gyration of star PS. However, much better universality had been observed when (N/RG,Li,o(2))(3/2) τ/τC parameter of the linear PS was used even for the 3-arm star PS. It could be explained if branching effect had been already taken into account in the part of τ/τC (=[(T-θTc)/θTc]/[(θTc-Tc)/Tc]). Here N and θTc stand for the number of monomer unit in a single polymer chain and a kind of theta temperature as the critical solution temperature Tc of the infinite molecular weight, respectively.
  1. Flory JP, Principles of Polymer Chemistry, Cornell University, Ithaca, NY (1953)
  2. Yamakawa H, Modern Theory of Polymer Solutions, Harper & Row, New York (1971)
  3. deGennes PG, Scaling Concepts in Polymer Physics, Cornell University, Ithaca, NY (1979)
  4. deGennes PG, J. Phys. Lett., 36, L55 (1975)
  5. deGennes PG, J. Phys. Lett., 39, L299 (1978)
  6. Sanchez IC, Macromolecules, 18, 1487 (1978)
  7. Sanchez IC, Macromolecules, 21, 2123 (1982)
  8. Farnoux B, Boue F, Cotton JP, Daoud M, Jannink G, Nierlich M, deGennes PG, J. Phys. Fe., 39, 77 (1978)
  9. Ackasu AZ, Han CC, Macromolecules, 12, 276 (1979) 
  10. Ackasu AZ, Benmouna M, Alkhafaji S, Macromolecules, 14, 177 (1981)
  11. Francois J, Schwartz T, Weill G, Macromolecules, 13, 564 (1980) 
  12. Oono Y, Kohmoto M, J. Chem. Phys., 78, 520 (1983) 
  13. Douglas JF, Freed KF, Macromolecules, 17, 7300 (1984)
  14. Douglas JF, Freed KF, Macromolecules, 17, 2344 (1984) 
  15. Douglas JF, Roovers J, Freed KF, Macromolecules, 23, 4168 (1990) 
  16. Dondos A, Polymer, 33, 4375 (1992) 
  17. Dondos A, Macromolecules, 26, 3966 (1993) 
  18. Park IH, Kim JH, Chang T, Macromolecules, 25, 7300 (1992) 
  19. Park IH, Macromolecules, 27(19), 5517 (1994) 
  20. Park IH, Macromolecules, 31(9), 3142 (1998) 
  21. Park IH, Kim MJ, Polym.(Korea), 22(1), 121 (1998)
  22. Kim MJ, Park IH, Bull. Korean Chem. Soc., 22, 1255 (2001)
  23. Candau F, Rempp P, Benoit H, Macromolecules, 5, 627 (1972) 
  24. Huglin MB, Light Scattering from Polymer Solutions, Academic Press, New York (1972)
  25. Brown W, Dynamic Light Scattering: The Method and Some Applications, Claredon Press, Oxford (1993)
  26. Shultz AR, J. Am. Chem. Soc., 76, 3422 (1954) 
  27. Chu B, Wang Z, Macromolecules, 21, 2283 (1988) 
  28. Xia KQ, An XQ, Shen WG, J. Chem. Phys., 105(14), 6018 (1996) 
  29. Douglas JF, Freed KF, Macromolecules, 17, 1854 (1984) 
  30. Douglas JF, Freed KF, Macromolecules, 17, 2354 (1984) 
  31. Kirkwood JG, Riseman J, J. Chem. Phys., 16, 565 (1948) 
  32. Zimm BH, J. Chem. Phys., 24, 269 (1956) 
  33. Weill G, Cloizeaux D, J. Phys. Paris, 40, 99 (1979)