Polymer(Korea), Vol.27, No.3, 255-264, May, 2003
세팔 별모양 폴리스타이렌 사슬의 팽창에 대한 만능 환산 온도 파라미터의 적용
Application of Universal Scaled Reduced Temperature Parameter to the Three-Arm Star Polystyrene
E-mail:
초록
세팔 별모양 폴리스타이렌 (PS, Mw=2.80×10(5), 2.49×10(6) g/mol)의 여러 종류의 사슬 크기를 t-decalin 용액의 온도 20∼70 ℃ 사이에서 점성도법, 레이저 광산란법을 이용하여 측정하였다. 별모양 고분자들의 팽창이 만능성을 갖기 위하여서는 그들 자신의 교란되지 않은 회전 반경 RG,Br,o이 포함된 (N/RG,Br,o(2))(3/2) τ/τC 파라미터가 사용될 것으로 예측하였으나, 실험 결과는 오히려 선형 폴리스타이렌 고분자의 교란되지 않은 회전 반경이 사용된 (N/RG,Li,o(2))(3/2) τ/τC 파라미터가 보다 우수한 만능성을 보여 주었다. 이러한 이유는 가지 효과가 τ/τC(=[(T-θTc)/θTc]/[(θTc-Tc)/Tc])부분에서 이미 반영되어 척도 상수 N/RG,o(2) 부분에서는 나타나지 않는 것으로 생각되어진다. 여기서 N은 고분자 사슬을 이루고 있는 단량체의 개수, θTc는 고분자의 분자량이 무한대일 때의 임계 용액 온도로써의 θ온도를 각각 의미한다.
Various chain sizes of 3-arm star polystyrenes (PS, Mw=2.80×10(5), 2.49×10(6) g/mol) in t-decalin solution were measured at the temperature range of 20∼70 ℃ by means of viscometry and laser light scattering. In order to show universality in the expansion factor of 3-arm star polymer, it was expected that (N/RG,Br,o(2))(3/2) τ/τC would be used as an universal parameter, where RG,Br,o was the unperturbed radius of gyration of star PS. However, much better universality had been observed when (N/RG,Li,o(2))(3/2) τ/τC parameter of the linear PS was used even for the 3-arm star PS. It could be explained if branching effect had been already taken into account in the part of τ/τC (=[(T-θTc)/θTc]/[(θTc-Tc)/Tc]). Here N and θTc stand for the number of monomer unit in a single polymer chain and a kind of theta temperature as the critical solution temperature Tc of the infinite molecular weight, respectively.
- Flory JP, Principles of Polymer Chemistry, Cornell University, Ithaca, NY (1953)
- Yamakawa H, Modern Theory of Polymer Solutions, Harper & Row, New York (1971)
- deGennes PG, Scaling Concepts in Polymer Physics, Cornell University, Ithaca, NY (1979)
- deGennes PG, J. Phys. Lett., 36, L55 (1975)
- deGennes PG, J. Phys. Lett., 39, L299 (1978)
- Sanchez IC, Macromolecules, 18, 1487 (1978)
- Sanchez IC, Macromolecules, 21, 2123 (1982)
- Farnoux B, Boue F, Cotton JP, Daoud M, Jannink G, Nierlich M, deGennes PG, J. Phys. Fe., 39, 77 (1978)
- Ackasu AZ, Han CC, Macromolecules, 12, 276 (1979)
- Ackasu AZ, Benmouna M, Alkhafaji S, Macromolecules, 14, 177 (1981)
- Francois J, Schwartz T, Weill G, Macromolecules, 13, 564 (1980)
- Oono Y, Kohmoto M, J. Chem. Phys., 78, 520 (1983)
- Douglas JF, Freed KF, Macromolecules, 17, 7300 (1984)
- Douglas JF, Freed KF, Macromolecules, 17, 2344 (1984)
- Douglas JF, Roovers J, Freed KF, Macromolecules, 23, 4168 (1990)
- Dondos A, Polymer, 33, 4375 (1992)
- Dondos A, Macromolecules, 26, 3966 (1993)
- Park IH, Kim JH, Chang T, Macromolecules, 25, 7300 (1992)
- Park IH, Macromolecules, 27(19), 5517 (1994)
- Park IH, Macromolecules, 31(9), 3142 (1998)
- Park IH, Kim MJ, Polym.(Korea), 22(1), 121 (1998)
- Kim MJ, Park IH, Bull. Korean Chem. Soc., 22, 1255 (2001)
- Candau F, Rempp P, Benoit H, Macromolecules, 5, 627 (1972)
- Huglin MB, Light Scattering from Polymer Solutions, Academic Press, New York (1972)
- Brown W, Dynamic Light Scattering: The Method and Some Applications, Claredon Press, Oxford (1993)
- Shultz AR, J. Am. Chem. Soc., 76, 3422 (1954)
- Chu B, Wang Z, Macromolecules, 21, 2283 (1988)
- Xia KQ, An XQ, Shen WG, J. Chem. Phys., 105(14), 6018 (1996)
- Douglas JF, Freed KF, Macromolecules, 17, 1854 (1984)
- Douglas JF, Freed KF, Macromolecules, 17, 2354 (1984)
- Kirkwood JG, Riseman J, J. Chem. Phys., 16, 565 (1948)
- Zimm BH, J. Chem. Phys., 24, 269 (1956)
- Weill G, Cloizeaux D, J. Phys. Paris, 40, 99 (1979)