화학공학소재연구정보센터
Polymer(Korea), Vol.27, No.3, 235-241, May, 2003
구리 함유 활성 탄소 섬유의 항균 특성
Antibacterial Activity of Activated Carbon Fibers Containing Copper Metal
E-mail:
초록
항균 활성이 없는 폴리아크릴로나이트릴계 활성 탄소 섬유에 항균 활성을 부여하기 위해 반응성이 큰 전이금속인 구리를 전해도금 방식으로 도입시켜, 활성 탄소 섬유의 항균 활성 및 기공 특성에 미치는 영향을 고찰해 보았다. 항균 활성 시험은 병원성 세균으로서 그람 양성균인 황색 포도상 구균 (Staphylococcus aureus)과 비병원성의 그람 음성균인 대장균 (Klebsiella pnemoniae)을 대상으로 그 효과를 측정하였으며, 활성 탄소 섬유의 기공 특성은 BET식, Boer의 t-plot, 그리고 H-K식을 이용하여 확인하였다. 도입되는 구리의 양이 많아질수록 활성 탄소 섬유의 비표면적, 총 기공 부피, 미세기공 부피 등이 감소되는 것이 관찰되었으며, 반면 항균 활성은 S. aureus 및 K. pnemoniae에서 증가되었다.
The polyacrylonitrile (PAN)-based activated carbon fibers (ACFs) containing copper metal were electrolytically prepared in introducing the antibacterial activity into ACFs. The antibacterial activity was investigated by dilution test against Staphylococcus aureus (S. aureus; gram positive and virulence) and Klebsiella pnemoniae (K. pnumoniae; gram negative and avirulence). The micropore and textural properties of the ACFs containing copper metal were characterized by BET, t-plot, and H-K methods. The ACFs showed slight decreases in BET’s specific surface area, micropore volume, and total pore volume as copper metal increased. However, the antibacterial activities of the ACFs were strongly increased against S. aureus as well as K. pnumoniae, which could be attributed to the presence of copper metal in Cu/ACFs systems.
  1. Calvert S, Englund HM, Handbook of Air Pollution Technology, John Wiley & Sons, New York (1984)
  2. Noll KE, Gounaris V, Hou WS, Adsorption Technology for Air Water Pollution Control, Lewis, Michigan (1992)
  3. Bansal RC, Donnet JB, Stoeckli F, Active Carbon, Marcel Dekker, New York (1998)
  4. Kawahara K, Tsurda K, Morishita M, Uchida M, Dent. Mater., 16, 452 (2000) 
  5. Spadaro Ja, Becker RO, Bioelectrochem. Bioenerg., 3, 49 (1976) 
  6. Oya A, Wakahara T, Yoshida S, Carbon, 31, 1243 (1993) 
  7. Oya A, Yoshida S, Monge JA, Solano AL, Carbon, 34, 53 (1996) 
  8. Li CY, Wan YZ, Wang J, Wang YL, Jiang XQ, Han LM, Carbon, 36, 61 (1998) 
  9. Blasco F, Perello L, Latorre J, Borras J, GarciaGranda S, J. Inorg. Biochem., 61, 143 (1996) 
  10. Oya A, Yoshida S, Carbon, 31, 71 (1993) 
  11. Yang M, Chen K, Tsai J, Tseng C, Lin S, Mater. Sci. Eng., 20, 167 (2002) 
  12. Park SJ, Jang YS, J. Colloid Interface Sci., 237(1), 91 (2001) 
  13. Park SJ, Jung WY, J. Colloid Interface Sci., 243(2), 316 (2001) 
  14. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938) 
  15. Lippens BC, deBoer JH, J. Catal., 4, 319 (1965) 
  16. Horvath G, Kawazoe K, J. Chem. Eng. Jpn., 16, 470 (1983)
  17. Abraham S, Pai BC, Satyanarayana KG, Vaidyan VK, J. Mater. Sci., 25, 2839 (1990) 
  18. Cullity B, Elements of X-ray Diffraction, Addison-Wesley, Amsterdam (1988)
  19. Ruthven DM, Principles of Adsorption and Adsorption Process, John Wiley, New York, Chap. 8 (1984)
  20. Park BJ, Park SJ, Ryu SK, J. Colloid Interface Sci., 217(1), 142 (1999) 
  21. Park SJ, Kim KD, J. Colloid Interface Sci., 212(1), 186 (1999) 
  22. Gail E, Kast K, Chem. Eng. Sci., 45, 403 (1990)