화학공학소재연구정보센터
Journal of Power Sources, Vol.118, No.1-2, 47-53, 2003
Innovative low temperature SOFCs and advanced materials
High ionic conductivity, varying from 0.01 to 1 S cm(-1) between 300 and 700 degreesC, has been achieved for the hybrid and nano-ceriacomposite electrolyte materials, demonstrating a successful application for advanced low temperature solid oxide fuel cells (LTSOFCs). The LTSOFCs were constructed based on these new materials. The performance of 0.15-0.25 W cm(-2) was obtained in temperature region of 320400 degreesC for the ceria-carbonate composite electrolyte, and of 0.35-0.66 W cm(-2) in temperature region of 500-600 degreesC for the ceria-lanthanum oxide composites. The cell could even function at as low as 200 degreesC. The cell has also undergone a life test for several months. A two-cell stack was studied, showing expected performance successfully. The excellent LTSOFC performance is resulted from both functional electrolyte and electrode materials. The electrolytes are two phase composite materials based on the oxygen ion and proton conducting phases, or two rare-earth oxides. The electrodes used were based on the same composite material system having excellent compatibility with the electrolyte. They are highly catalytic and conductive thus creating the excellent performances at low temperatures. These innovative LT materials and LTSOFC technologies would open the door for wide applications, not only for stationary but also for mobile power sources. (C) 2003 Elsevier Science B.V. All rights reserved.