Inorganic Chemistry, Vol.42, No.8, 2654-2664, 2003
AgC(CN)(3)-based coordination polymers
Reaction of Ag(tcm), tcm = tricyanomethanide, C(CN)(3)(-), with a range of terminal and bridging ligands results in formation of a series of new coordination polymers. Recrystallization of Ag(tcm) from acetonitrile generates Ag-(tcm)(MeCN), which is composed of corrugated (6,3) sheets displaying two-fold 2D --> 2D parallel interpenetration and is topologically identical to the parent Ag(tcm) structure. Ag(tcm)(L) species, L = 1,4-diazobicyclo-(2.2.2]-octane (dabco) or 4,4'-bipyridine (bipy), contain two interpenetrating 3D networks composed of 3-connecting (tcm) and 5-connecting (Ag) centers. The structure of Ag(tcm)(bpe), bpe = 1.2-bis(4-pyridyl)ethene, contains 1D ladderlike polymers connected by weak Ag-tcm interactions into two interpenetrating 3D nets. Ag(tcm)(Mepyz)(32), Mepyz = methylpyrazine, also contains 1D ladders, while Ag(tcm)(Me(4)pyz)(1 2), Me(4)pyz = tetramethylpyrazine, contains 2D sheets composed of Ag(tcm) 1D "tubes" linked by bridging Me(4)pyz ligands. Ag(tcm)(hmt), hmt = hexamethylenetetramine, has a 3D network structure in which the hmt ligands are 3-connecting, the tcm anions are 2-connecting, and the! silver atoms are 5-connecting. The topology is the same as displayed by Ag(tcm)(L), L = dabco or bipy.