화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.35, No.6, 915-920, December, 1997
EPICS법을 이용한 Air/Water분배계수(Henry 상수)측정과 포화증기압 및 포화용해도와의 상관관계
Measurement of Air/Water Partition Coefficient(Henry’s Law Constant) by Using EPICS Method and Their Relationship with Vapor Pressure and Water Solubility
초록
EPICS(eqilibrium partitioning in closed system)법에 의하여 환경매개변수인 air/water분배계수(Kaw)를 측정하였다. EPICS법의 검토를 위해 n-alkane계의 Kaw값을 측정하고 이를 문헌값과 비교함으로 본 실험방법의 정확성과 재현성을 확인할 수 있었다. 이러한 결과를 바탕으로 화학공업현장에서의 주요 유기오염물질과 최근 무연 혹은 저연 휘발유의 옥탄가 향상제로 사용되어 사용량이 급증하는 MTBE와 TAME에 대하여 Kaw를 측정하고 그로부터 Henry 상수를 계산하였으며, 포화증기압과 용해도와의 상관관계를 알아보았다. Kaw는 실험에 사용되어진 화합물 중 benzene 치환제를 제외한 방향족·염소 화합물에서 몰부피에 따라 증가하고 용해도와 포화증기압에 대해서는 감소하는 경향을 나타내었으며, Henry 상수는 방향족·염소 화합물에서 온도에 따라서 증가하는 경향을 보였다.
Air/water partition coefficient(Kaw) as environment parameter were measured by EPICS (equilibrium partitioning in closed system) method. Kaw of some n-alkanes were measured to test EPICS method. The accuracy and reproducibility of this method were reliable, since experimental values were agreed very well with literature values. Then, we measured Kaw and Henry’s law constants of some organic compounds which are widely used in the field of chemical industry and MTBE and TAME which are recently used as an octane booster for unleaded or low leaded gasolone. The relationship between Kaw and vapor pressure and water solubility was analysed. The measured Kaw was linearly proportional to molar volume and temperature, and inversely proportional to water solubility and vapor pressure except substituted benzene. Henry’s constants are increased with the temperature.
  1. Berthelot M, Jungfleisch E, Ann. Chem. Phys., 4, 26 (1872)
  2. Mackay D, Shiu WY, Sutherland RP, Environ. Sci. Technol., 13, 333 (1979) 
  3. Mackay D, Shiu WY, J. Phys. Chem. Ref. Data, 10, 1175 (1981)
  4. Schwarzenbach RP, Gschwend PM, Imboden DM, "Environmental Organic Chemistry," John Wiley & Sons, Inc. (1993)
  5. Pinsuwan S, Li A, Yalkowsky SH, J. Chem. Eng. Data, 40(3), 623 (1995) 
  6. Hansch C, Leo A, "Substituent Constants for Correlation Analysis in Chemistry and Biology," Wiley, New York (1979)
  7. Hine J, Mookerjee PK, J. Org. Chem., 40, 292 (1975) 
  8. Leo A, Hansch C, Elkins D, Chem. Rev., 71, 525 (1971) 
  9. Swann RL, Laskoski DA, McCall PJ, Vander KK, Dishburger HJ, "A Rapid Method for the Estimation of the Environmental Parameters Octanol/Water Partition Coefficient, Soil Sorption Constant, Water to Air Ratio, and Water Solubility,", "Residue Reviews 85,", Springer-Verlag, New York, Inc. (1983)
  10. Tse G, Sandler SI, J. Chem. Eng. Data, 39(2), 354 (1994) 
  11. Fendinger NJ, Glotfelty DE, Environ. Sci. Technol., 22, 1289 (1988) 
  12. McAuliffe CD, Chem. Tech., 1, 46 (1971)
  13. James MG, Environ. Sci. Technol., 21, 202 (1987) 
  14. Prausnitz JM, Lichtenthaler RN, Azevedo EG, "Molecular Thermodynamics of Fluid-Phase Equilibria," Prentice-Hall, Englewood Cliffs, New York (1986)
  15. Reid RC, Prausnitz JM, Poling BE, "The Properties of Gases & Liquids," McGraw-Hill Inc. (1987)
  16. Gmehling J, Onken U, Arlt W, "Vapor-liquid Equilibrium Data Collection," DECHEMA (1981)
  17. Stephenson RM, Malanowski S, "Handbook of the Thermo-Dynamics of Organic Compounds," Elsevier (1987)
  18. Gossett JM, Environ. Sci. Technol., 21, 202 (1987)