화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.35, No.5, 738-746, October, 1997
역마이셀을 이용한 α-Chymotrypsin 추출의 속도론 및 방법론
Kinetics and Methodology of α-Chymotrypsin Extraction by Reverse Micelles
초록
음이온성 계면활성제 AOT와 iso-octane으로 이루어진 역마이셀상을 이용하여 α-chymotrypsin을 추출하는데 있어 속도론적 및 방법론적 연구를 하였다. 단백질의 이동속도는 이중경막론에 근거한 수학적 모델을 이용하여 정량화하였다. 상간이동법에서 단백질의 순이동 속도는 이동률과 아울러 pH(<pI)와 이온세기가 낮아질수록 증가한 반면, 그 반대 조건에서는 역이동이 우세하였다. 그러나 역이동 속도는 순이동 속도에 비해 약 10-100배 정도 느림을 보였다. 또한, 순이동의 pH 조건은 역이동 속도 및 이동률에 큰 영향을 주었다. α-Chymotrypsin의 역이동을 위하여 분자체를 이용한 탈수법을 도입한 결과 pH나 이온세기의 조작 없이 단백질을 침전으로 얻어내는 것이 가능하였고 역이동에서 순이동시의 pH와 이온세기는 단백질을 침전으로 얻어내는데 영향을 주지 않았다. 그리고 분자체의 투입량이 증가할수록 회수율이 증가하였고 상간이동법에 비해 높은 값을 나타내었다.
Kinetics and methodology were investigated for the extraction of α-chymotrypsin using reverse micellar phase composed of AOT and iso-octane. Experimental data on the transfer rates of protein were analyzed quantitatively by a mathematical model based on the two-film theory of mass transfer. In the case of phase transfer method, the rate and percentage of the forward transfer increased with decreasing pH(<pI) and ionic strength, while the opposite conditions favored the back extraction from the reverse micellar phase. The rates of the back extraction, however, were approximately 10 to 100 times smaller than those of the forward extraction. The forward pH condition also had a significant influence on the rate and percentage of backward transfer. In another method that was introduced for the backward transfer, the micelles were dehydrated with molecular sieves in order to precipitate protein without manipulating pH and ionic strength. The forward pH and ionic strength did not act upon the precipitation of protein and the recovery of protein was elevated with molecular sieves input and higher than in the phase transfer method.
  1. Abbott NL, Hatton TA, Chem. Eng. Prog., 84, 31 (1988)
  2. Dekker M, Hilhorst R, Lanne C, Anal. Biochem., 178, 217 (1989) 
  3. Martinek K, Levashov AV, Klyachko N, Khemelnitsky YL, Berezin IV, Eur. J. Biochem., 155, 453 (1986) 
  4. Jolivalt C, Minier M, Renon H, J. Colloid Interface Sci., 135(1), 85 (1990) 
  5. Rahaman RS, Chee JY, Cabral JMS, Hatton TA, Biotechnol. Prog., 4(4), 218 (1988)
  6. Woll JM, Hatton TA, Yarmush ML, Biotechnol. Prog., 5(2), 57 (1989)
  7. Regalado C, Asenjo JA, Pyle DL, Biotechnol. Bioeng., 44(6), 674 (1994) 
  8. Leser ME, Mrkoci K, Kuisi PL, Biotechnol. Bioeng., 41, 489 (1993) 
  9. Gupta RB, Han CJ, Johnston KP, Biotechnol. Bioeng., 44(7), 830 (1994) 
  10. Mersmann A, "Ullmann's Encyclopedia of Industrial Chemistry," VCH, Weinheim (1987)
  11. Dungan SR, Bausch T, Hatton TA, Plucinski P, Nitsch W, J. Colloid Interface Sci., 145(1), 33 (1991) 
  12. Lye GJ, Asenjo JA, Pyle DL, Chem. Eng. Sci., 49(19), 3195 (1994) 
  13. Dekker M, VantRiet K, Weijers SR, Chem. Eng. J., 33, B27 (1986) 
  14. Lye GJ, Asenjo JA, Pyle DL, AIChE J., 42(3), 713 (1996) 
  15. Ballag DM, Edelstein SJ, "Protein Method," Wiley Liss, New York, 46 (1991)
  16. Holme DJ, Peck H, "Analytical Biochemistry," 40 (1994)
  17. Marcozzi G, Correa N, Luisi PL, Biotechnol. Bioeng., 38, 1239 (1991) 
  18. Skoog DA, West DM, Holler FJ, "Fundamentals of Analytical Chemistry," 6th ed., Holt, Rinehart and Winston, New York, 393, 762 (1992)
  19. Brandani V, Giacomo GD, Spera L, Process Biochem., 28, 411 (1993) 
  20. Brandani V, Digiacomo G, Spera L, Process Biochem., 29(5), 363 (1994) 
  21. Wolbert RBG, Hilhorst R, Dekker M, Van'tReit K, Bijsterbosch BH, Eur. J. Biochem., 184, 627 (1989) 
  22. Sheu E, Goklen KE, Hatton TA, Chen SH, Biotechnol. Prog., 2(4), 175 (1986)
  23. Tamamushi N, Watanabe N, Colloid Polym. Sci., 258, 174 (1980) 
  24. Bausch TE, Plucinski PK, Nitsch W, J. Colloid Interface Sci., 150(1), 226 (1992) 
  25. Paradkar VM, Dordick JS, Biotechnol. Bioeng., 43, 529 (1993) 
  26. Timmins GS, Davies MJ, Gilbert BC, J. Chem. Soc.-Faraday Trans., 90(18), 2643 (1994)