- Previous Article
- Next Article
- Table of Contents
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.4, 526-532, June, 2003
EPDM/PP계 열가소성 가교체의 유변특성 및 물성에 미치는 조성의 영향
Effects of Composition on Rheological and Physical Properties of EPDM/PP-based Thermoplastic Vulcanizates
E-mail:
초록
ethylene-propylene diene ter-monomer (EPDM)/polypropylene (PP)계 thermoplastic olefin (TPO)와 thermoplastic vulcanizate (TPV)의 유변특성 및 기계적 물성에 미치는 EPDM/PP 조성비, 오일함량, 카본블랙 함량의 영향을 조사하였다. TPO 및 TPV는 고분자 수지의 전형적인 power law 형태의 pseudoplastic 흐름거동을 따르는 것을 확인하였다. EPDM의 함량이 높을수록 높은 점도를 나타내었다. 오일함량 증가에 따라 선형적인 점도하락을 보인반면, 카본블랙은 그다지 큰 영향을 보이지 않았다. TPO의 경우 EPDM 함량 증가에 따라 인장강도의 선형적인 감소를 나타낸 반면, TPV의 경우 EPDM 함량이 65 wt%까지는 거의 유사한 결과를 보인 후 그 이상에서는 급격한 감소를 나타내었다. TPO 및 TPV의 모듈러스는 Coran-Patel 모델에 잘 따르는 것으로 확인되었다. TPO의 경우 EPDM의 함량이 70 wt% 이상에서 상변환이 일어나지만, TPV의 경우는 동일조성에서 상변환이 관찰되지 않았다.
Effects of ethylene-propylene diene ter-monomer (EPDM)/polypropylene (PP) composition, oil and carbon black contents on the rheological and mechanical properties of thermoplastic olefin (TPO) and thermoplastic vulcanizate (TPV) based on EPDM/PP were investigated. It was found that the flow behavior of TPO and TPV followed the power-law behavior showing a typical pseudoplastic characteristics. Higher shear viscosity was observed with increased EPDM content. The shear viscosity decreased with increasing oil content, but no considerable effect was found by the addition of carbon black. Tensile strength of TPO decreased linearly with increasing EPDM content, while that of TPV maintained until 65 wt% and then rapidly decreased with further increase of EPDM content. Tensile moduli of TPO and TPV could be well predicted by the Coran-Patel model. When the content of EPDM was increased to about 70 wt%, phase inversion was observed for TPO, but it was not found for TPV.
- Coran AY, Patel RP, Thermoplastic Elastomers, 2nd ed., ed. G. Holden, N.R. Legge, and R.P. Quirk, chap. 7, Hanser Publishers, New York (1996)
- Abdou-Sabet S, Rader CP, Thermoplastic Elastomers from Rubber-plastic Blends, ed. S.K. De and A.K. Bhowmick, Chap. 6, Ellis Horwood, London (1990)
- U.S. Patent, 3,037,954 (1962)
- U.S. Patent, 3,758,643 (1973)
- U.S. Patent, 4,036,917 (1977)
- U.S. Patent, 4,046,840 (1977)
- U.S. Patent, 4,140,732 (1979)
- Coran AY, Patel R, Rubber Chem. Technol., 53, 781 (1980)
- U.S. Patent, 4,288,570 (1981)
- Coran AY, Patel R, Rubber Chem. Technol., 56, 210 (1983)
- Han CD, Rheology in Polymer Processing, Academic Press, New York (1976)
- Coran AY, Handbook of Elastomers, ed. A.K. Bhowmick, and H.L. Stephens, Chap. 10, Mascel Dekker, Inc., New York (2001)
- Gent AN, Engineering with Rubber: How to Design Rubber Components, Hanser, New York (1992)
- Abdou-Sabet S, Puydak RC, Rader CP, Rubber Chem. Technol., 69, 476 (1996)
- Kresge EN, Rubber Chem. Technol., 64, 469 (1991)
- Abdou-Sabet S, Patel RP, Rubber Chem. Technol., 64, 769 (1991)
- Ihm DJ, M.S. Thesis, Korea Advanced Institute of Science and Technology Daejeon, Korea (1984)