화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.4, 418-422, June, 2003
양극산화 표면처리된 활성탄소의 암모니아 제거
Ammonia Removal of Activated Carbons Treated by Anodic Oxidation
E-mail:
초록
본 연구에서는 활성탄소의 암모니아 가스 제거성능을 향상시키기 위하여 sodium hydroxide와 phosphoric acid를 전해질로 하여 양극산화 표면처리 하였다. Boehm의 적정법으로 활성탄소 표면의 산염기도를 측정하였으며, 표면특성의 변화는 FT-IR과 XPS 분석으로 조사하였다. 비표면적과 미세기공부피를 포함한 N2/77 K 등온 흡착 특성은 BET식과 Boer의 t-plot을 이용하여 확인하였으며, 암모니아 제거성능은 가스 검지관을 이용하여 측정하였다. 본 실험결과, 산성 전해질을 사용하여 활성탄소에 양극산화한 경우는 등온흡착특성의 별다른 변화 없이 활성탄소 표면에 OH기가 도입되어 암모니아 제거성능을 향상시킨 반면, 염기성 전해질을 사용한 경우에는 활성탄소의 비표면적의 감소에도 불구하고 C=O, O=C-O, CO32-등의 산소 함유 관능기로 인하여 암모니아 제거성능이 미세하게 증가하는 것을 확인할 수 있었다. 결국, 활성탄소에 산을 이용한 양극산화 표면처리방법은 활성탄소 표면에 페놀기를 포함한 산소관능기의 증가를 증가시켜 암모니아 제거성능을 향상시키는 적당한 방법임을 확인할 수 있었다.
The activated carbons (ACs) were prepared by anodic oxidation treatment to remove ammonia gas. The chemical solutions used in this experiment were sodium hydroxide and phosphoric acid. The acid- and base values were determined by Boehm's titration method. The surface properties of ACs were investigated by FT-IR and XPS analyses. N2/77K adsorption isotherm characteristics, including the specific surface area and micropore volume were studied by BET and t-plot methods, respectively. The ammonia removal efficiency was confirmed by a gas-detecting tube technique. As a result, it was revealed in the case of acidic treatment on ACs that the ammonia removal was more effective due to the increase of OH groups in ACs surfaces without any particular changes of adsorption isotherm characteristics. However, in the case of basic treatment, the ammonia removal was slightly improved due to the increase of oxygen functional groups in ACs surfaces in spite of decreasing the BET's specific surface area. Therefore, it was found that acidic anodization of ACs was a suitable method for the removal of ammonia, which was attributed to the increase of oxygen functional groups containing phenol groups in ACs surfaces.
  1. Calvert S, Englund HM, Handbook of Air Pollution Technology, John Wiley & Sons, New York (1984)
  2. Netting J, Nature, 406, 928 (2000) 
  3. Bansal RC, Donnet JB, Storckli F, Active Carbon, Marcel Dekker, New York (1988)
  4. Kapustin GI, Brueva TR, Thermochim. Acta, 379(1-2), 71 (2001) 
  5. Kang YC, Ransier RD, Vacuum, 64, 113 (2002) 
  6. Gregg SJ, Sing KSW, Adsorption, Surface Area and Prosity Academic Press, New York (1982)
  7. Park SJ, Jung WY, J. Colloid Interface Sci., 243(2), 316 (2001) 
  8. Pittman CU, Jiang W, Yue ZR, Leon CA, Leon Y, Carbon, 37, 85 (1999) 
  9. Ruthven DM, Principles of Adsorption and Adsorption Process, Chap. 8, John Wiley & Sons, New York (1984)
  10. Henning KD, Schafer S, Gas Sep. Purif., 7, 235 (1993) 
  11. Park SJ, Kim JS, Carbon, 39, 2011 (2001) 
  12. Park SJ, Kim KD, J. Colloid Interface Sci., 218(1), 331 (1999) 
  13. Park SJ, Park BJ, Ryu SK, Carbon, 37, 1223 (1999) 
  14. Boehm HP, Adv. Catal., 16, 179 (1966)
  15. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938) 
  16. Lippens BC,deBoer JH, J. Catal., 4, 319 (1965) 
  17. Horvath G, Kawazoe K, J. Chem. Eng. Jpn., 16, 470 (1983)
  18. Park SJ, Interfacial Forces and Fields: Theory and Applications, ed. J.P. Hsu, Chap. 9, Marcel Dekker, New York (1999)
  19. Wagner CD, Riggs WM, Davis LE, Moulder JF, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp. Norrwalk (1979)
  20. Park SJ, Jang YS, J. Colloid Interface Sci., 249(2), 458 (2002) 
  21. Carrott JRM, Toledo IB, Garcia MA, Castilla CM, Carbon, 32, 93 (1994)