화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.41, No.2, 249-255, April, 2003
회분식 장치를 이용한 아임계 및 초임계 조건에서의 Polyethylene Terephthalate(PET) 가수분해 특성
Hydrolysis of Polyethylene Terephthalate(PET) under Subcritical and Supercritical Water Using Batch System
E-mail:
초록
PET의 가수분해 반응 특성을 규명하기 위해 반응조건을 아임계 및 초임계 영역으로 구분하여 반응속도와 생성물의 수율 변화에 관해 고찰하였다. 실험은 molten salt bath와 35 ml의 반응기를 사용하여 온도 300-400 ℃, 압력 15-40 MPa, 반응시간 1-30분의 범위에서 수행하였다. 반응의 주 생성물은 terephthalic acid(TPA)이고, 기상 생성물은 미랑 생성되었다. 모든 반응 온도에서 시간과 압력의 증가에 따라 PET의 분해율과 TPA의 수율은 증가하였으며, 30 MPa의 아임계 영역에서 30분간 반응시킨 PET 분해율 및 TPA 수율은 300 ℃에서 85.33%와 83.55%, 350 ℃에서 96.45%와 94.45%를 나타낸 반면, 초임계 영역인 30 MPa, 400 ℃, 8분에서 98.25%와 97.24%로 PET 가수분해는 매우 짧은 반응시간으로 가능하였다. 아임계 영역(30 MPa, 350 ℃)에서 가수분해 반응은 2차 가역의 반응이었으며 PET 가수분해 반응의 활성화 에너지(Ea)는 144 kJ/mol임을 확인하였다.
To identify the hydrolysis characteristics of PET the decomposition rate and yield for conversion from PET into products were compared by varying reaction temperature, pressure and time in the range of the subcritical and supercritical water. Experiments were conducted by the batch bomb reactors using the molten salt bath with temperature ranging 300 to 400 ℃ and pressure ranging 15 to 40 MPa and reaction time ranging 1 to 30 min, and then the product distribution by the reaction variables was investigated. The main product of reaction was its monomer, terephthalic acid(TPA). But little gaseous products were formed in these reactions. Decompositions of PET and yields of TPA were increased with increasing pressure and reaction time at each temperature. Maximum yields of hydrolysis products and PET decomposition at pressure of 30 MPa were 85.33% and 83.55% at 300 ℃ in the subcritical region and 94.45% and 95.45% at 350 ℃ with 30 min of reaction time in the near-critical region which 98.25% and 98.24% at 400 ℃, with 8 min of reaction time in the supercritical region respectively. Therefore PET could be successfully decomposed at a very short reaction time under supercritical water condition. The PET hydrolysis reaction was reversible second order and the activation energy was 144kJ/mol under 30 MPa and 350 ℃.
  1. Paszun D, Spychaj T, Ind. Eng. Chem. Res., 36(4), 1373 (1997) 
  2. Yo DI, Kim BH, Mon TS, Park KH, Kook YH, Kim JH, J. Korean Fiber Soc., 33(10), 888 (1996)
  3. Sako T, Sugeta T, Otake K, Nakazawa N, Sato M, Namiki K, Tsugumi M, J. Chem. Eng. Jpn., 30(2), 342 (1997) 
  4. Kao CY, Wan BZ, Cheng WH, Ind. Eng. Chem. Res., 37(4), 1228 (1998) 
  5. Nagase Y, Yamagata M, Kobelco Technol. Rev., 22, 11 (1999)
  6. Launay A, Thominette F, Verdu J, Polym. Degrad. Stabil., 63, 385 (1999) 
  7. Towndend HS, Abraham MA, Huppert GL, Klein MT, Paspek SC, Ind. Eng. Chem. Res., 27(1), 143 (1988) 
  8. Kwon DK, "Depolymerization of PET Recycled from Post-Consumer Soft-Drink Bottles," Master Dissertation, Soongsil University, Seoul, Korea (1994)
  9. Campanelli JR, Kamal MR, Cooper DG, J. Appl. Polym. Sci., 48, 443 (1993)