Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.2, 189-194, April, 2003
제올라이트 X/활성탄 복합체의 H2O 흡착 특성연구
Adsorption Characteristics of H2O on Zeolite X/Activated Carbon Composite
E-mail:
초록
왕겨를 출발 원료로 하여 제올라이트 X/활성탄 복합체(제오카본)를 합성하였으며, 합성된 복합체와 제올라이트 13X에 대한 H2O의 흡착 특성을 비교 하였다. 실험을 통해 얻어진 흡착 등온선에 Langmuir-Freundlich, Multi-BET 및 Excess surface Work (ESW) 모델을 적용 시켰다. 결과에서 알 수 있듯이, 제오카본의 경우에는 Langmuir-Freundlich 모델을 적용했을 경우에는 313.15 K (1.39%), Multi-BET 모델의 경우에는 313.15 K (2.29%), ESW 모델 적용시는 353.15 K (0.47%) 온도에서 가장 작은 오차를 보여주었다. 제올라이트 13X의 경우에는 Langmuir-Freundlich 모델을 적용했을 경우에는 353.15 K (0.10%), Multi-BET 모델의 경우에는 313.15 K (0.65%), ESW 모델 적용시는 353.15 K (0.68%) 온도에서 가장 작은 오차를 보여주었다. 특히, ESW 모델은 Langmuir-Freundlich, Multi-BET model에 비해서 저압영역에서는 단분자층 흡착과 고압 영역에서는 capillary condensation 현상 등이 고려된 결과, 모든 온도와 압력 범위에서 잘 적용되었다.
Zeolite X/activated carbon composite (zeocarbon) was synthesized from rice hulls. The adsorption equilibrium of H2O on zeocarbon was compared with that of zeolite 13X. Langmuir-Freundlich, Excess Surface Work (ESW) and Multi-BET isotherm models were used to fit the experimental data of H2O adsorption on zeocarbon and zeolite 13X. In the case of zeocarbon, the minimum error of 1.39 % resulted when the Langmuir-Freundlich model was applied at 313.15 K. In the cases of Multi-BET and ESW models, the minimum errors were 2.29 % and 0.47 % at 313.15 K and 353.15 K, respectively. In the case of zeolite 13X, the minimum error was 0.10 % at 353.15 K with the Langmuir-Freundlich model. In the case of Multi-BET model and ESW model, the minimum errors were 0.65 % and 0.68, at 313.15 K and 353.15 K, respectively. ESW model was found to be in better agreement with the experimental values than Langmuir-Freundlich model or Mult-BET model. Considering that monolayer adsorption occurs in low-pressure region, while the capillary condensation phenomenon prevails in high-pressure region, ESW model fitted well under all the temperature and pressure conditions.
- Kalapathy U, Proctor A, Shultz J, Bioresour. Technol., 72(2), 99 (2000)
- Kalapathy U, Proctor A, Shultz J, Bioresour. Technol., 73(3), 257 (2000)
- Ko YS, Ahn WS, HWAHAK KONGHAK, 31(6), 707 (1993)
- Korea Patent, 26809 (1995)
- Pendyal B, Johns MM, Marshall WE, Ahmedna M, Rao RM, Bioresour. Technol., 69(1), 45 (1999)
- Ahmedna M, Marshall WE, Rao RM, Bioresour. Technol., 71(2), 113 (2000)
- Lee JS, Kim JH, Kim JT, Suh JK, Lee JM, Lee CH, J. Chem. Eng. Data, in press
- Kim JT, Lee JS, Hong JS, Suh JK, Lee CH, Lee JM, J. Korean Ind. Eng. Chem., 13(4), 345 (2002)
- Adolphs J, Setzer MJ, J. Colloid Interface Sci., 184(2), 443 (1996)
- Adolphs J, Setzer MJ, J. Colloid Interface Sci., 180(1), 70 (1996)
- Adolphs J, Setzer MJ, J. Colloid Interface Sci., 207(2), 349 (1998)
- Yang RT, Gas Separation by Adsorption Processes: Butterworths Series in Chemical Engineering, Butterworth Publishers, Boston (1987)
- Do DD, Adsorption Analysis: Equilibria and Kinetic, Imperial College Press, London (1998)
- Ryu YK, Lee SJ, Kim JW, Lee CH, Korean J. Chem. Eng., 18(4), 525 (2001)
- Gregg SJ, Colloids Surf., 21, 109 (1986)
- Lowell S, Shields JE, Powder Surface Area and Porosity, Brain Scarlett (1994)
- Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, Academic Press (1982)
- Gil A, Analysis of the Micropore Structure of Various Microporous Materials from Nitrogen Adsorption at 77 K, Adsorption, 4, 197 (1998)
- Ruthven DM, Principles of Adsorption and Adsorption Processes, John Wiley & Sons, Inc. New York (1984)
- Myers AL, Fundamentals of Adsorption, Proceedings of the Engineering Foundation Conference Held at Schloss Elmau, Bavaria, West Germany, May 6 ~ 11 (1983)
- Ross RC, Oliver JP, On Physical Adsorption, Interscence, New York (1964)
- Kim DJ, Shim WG, Moon H, Korean J. Chem. Eng., 18(4), 518 (2001)