화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.2, 189-194, April, 2003
제올라이트 X/활성탄 복합체의 H2O 흡착 특성연구
Adsorption Characteristics of H2O on Zeolite X/Activated Carbon Composite
E-mail:
초록
왕겨를 출발 원료로 하여 제올라이트 X/활성탄 복합체(제오카본)를 합성하였으며, 합성된 복합체와 제올라이트 13X에 대한 H2O의 흡착 특성을 비교 하였다. 실험을 통해 얻어진 흡착 등온선에 Langmuir-Freundlich, Multi-BET 및 Excess surface Work (ESW) 모델을 적용 시켰다. 결과에서 알 수 있듯이, 제오카본의 경우에는 Langmuir-Freundlich 모델을 적용했을 경우에는 313.15 K (1.39%), Multi-BET 모델의 경우에는 313.15 K (2.29%), ESW 모델 적용시는 353.15 K (0.47%) 온도에서 가장 작은 오차를 보여주었다. 제올라이트 13X의 경우에는 Langmuir-Freundlich 모델을 적용했을 경우에는 353.15 K (0.10%), Multi-BET 모델의 경우에는 313.15 K (0.65%), ESW 모델 적용시는 353.15 K (0.68%) 온도에서 가장 작은 오차를 보여주었다. 특히, ESW 모델은 Langmuir-Freundlich, Multi-BET model에 비해서 저압영역에서는 단분자층 흡착과 고압 영역에서는 capillary condensation 현상 등이 고려된 결과, 모든 온도와 압력 범위에서 잘 적용되었다.
Zeolite X/activated carbon composite (zeocarbon) was synthesized from rice hulls. The adsorption equilibrium of H2O on zeocarbon was compared with that of zeolite 13X. Langmuir-Freundlich, Excess Surface Work (ESW) and Multi-BET isotherm models were used to fit the experimental data of H2O adsorption on zeocarbon and zeolite 13X. In the case of zeocarbon, the minimum error of 1.39 % resulted when the Langmuir-Freundlich model was applied at 313.15 K. In the cases of Multi-BET and ESW models, the minimum errors were 2.29 % and 0.47 % at 313.15 K and 353.15 K, respectively. In the case of zeolite 13X, the minimum error was 0.10 % at 353.15 K with the Langmuir-Freundlich model. In the case of Multi-BET model and ESW model, the minimum errors were 0.65 % and 0.68, at 313.15 K and 353.15 K, respectively. ESW model was found to be in better agreement with the experimental values than Langmuir-Freundlich model or Mult-BET model. Considering that monolayer adsorption occurs in low-pressure region, while the capillary condensation phenomenon prevails in high-pressure region, ESW model fitted well under all the temperature and pressure conditions.
  1. Kalapathy U, Proctor A, Shultz J, Bioresour. Technol., 72(2), 99 (2000) 
  2. Kalapathy U, Proctor A, Shultz J, Bioresour. Technol., 73(3), 257 (2000) 
  3. Ko YS, Ahn WS, HWAHAK KONGHAK, 31(6), 707 (1993)
  4. Korea Patent, 26809 (1995)
  5. Pendyal B, Johns MM, Marshall WE, Ahmedna M, Rao RM, Bioresour. Technol., 69(1), 45 (1999) 
  6. Ahmedna M, Marshall WE, Rao RM, Bioresour. Technol., 71(2), 113 (2000) 
  7. Lee JS, Kim JH, Kim JT, Suh JK, Lee JM, Lee CH, J. Chem. Eng. Data, in press
  8. Kim JT, Lee JS, Hong JS, Suh JK, Lee CH, Lee JM, J. Korean Ind. Eng. Chem., 13(4), 345 (2002)
  9. Adolphs J, Setzer MJ, J. Colloid Interface Sci., 184(2), 443 (1996) 
  10. Adolphs J, Setzer MJ, J. Colloid Interface Sci., 180(1), 70 (1996) 
  11. Adolphs J, Setzer MJ, J. Colloid Interface Sci., 207(2), 349 (1998) 
  12. Yang RT, Gas Separation by Adsorption Processes: Butterworths Series in Chemical Engineering, Butterworth Publishers, Boston (1987)
  13. Do DD, Adsorption Analysis: Equilibria and Kinetic, Imperial College Press, London (1998)
  14. Ryu YK, Lee SJ, Kim JW, Lee CH, Korean J. Chem. Eng., 18(4), 525 (2001)
  15. Gregg SJ, Colloids Surf., 21, 109 (1986) 
  16. Lowell S, Shields JE, Powder Surface Area and Porosity, Brain Scarlett (1994)
  17. Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, Academic Press (1982)
  18. Gil A, Analysis of the Micropore Structure of Various Microporous Materials from Nitrogen Adsorption at 77 K, Adsorption, 4, 197 (1998)
  19. Ruthven DM, Principles of Adsorption and Adsorption Processes, John Wiley & Sons, Inc. New York (1984)
  20. Myers AL, Fundamentals of Adsorption, Proceedings of the Engineering Foundation Conference Held at Schloss Elmau, Bavaria, West Germany, May 6 ~ 11 (1983)
  21. Ross RC, Oliver JP, On Physical Adsorption, Interscence, New York (1964)
  22. Kim DJ, Shim WG, Moon H, Korean J. Chem. Eng., 18(4), 518 (2001)