화학공학소재연구정보센터
Macromolecular Research, Vol.11, No.1, 53-61, February, 2003
Salt-Induced Protein Precipitation in Aqueous Solution: Single and Binary Protein Systems
E-mail:
A molecular-thermodynamic model is developed for the salt-induced protein precipitation. The protein molecules interact through four intermolecular potentials. An equation of state is derived based on the statistical mechanical perturbation theory with the modified Chiew’s equation for the fluid phase, Young's equation for the solid phase as the reference system and a perturbation based on the protein-protein effective two body potential. The equation of state provides an expression for the chemical potential of the protein. In a single protein system, the phase separation is represented by fluid-fluid equilibria. The precipitation behaviors are simulated with the partition coefficient at various salt concentrations and degree of pre-aggregation effect for the protein particles. In a binary protein system, we regard the system as a fluid-solid phase equilibrium. At equilibrium, we compute the reduced osmotic pressure-composition diagram in the diverse protein size difference and salt concentrations.
  1. Foster PR, Dunhill P, Lilly MD, Biochem. Biophys. Acta, 317, 505 (1975)
  2. Haire RN, Tisel WA, White JC, Rosenberg A, Biopolymers, 23, 2761 (1984) 
  3. Shih YC, Blanch HW, Prausnitz JM, Biotechnol. Bioeng., 40, 1155 (1992) 
  4. Niederauer MQ, Glatz CE, Adv. Biochem. Eng. Technol., 47, 159 (1992)
  5. Rothstein F, Protein Precipitation Process Engineering, R.G. Harrion, Ed., Dekker, New York (1994)
  6. Coen CJ, Blanch HW, Prausnitz JM, AIChE J., 41(4), 996 (1995) 
  7. Verwey E, Overbeek J, Theory of Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948)
  8. Askura S, Oosawa F, J. Polym. Sci., 33, 183 (1958) 
  9. Vrij A, Pure Appl. Chem., 48, 471 (1976)
  10. Joanny JF, Leibler L, deGennes PG, J. Polym. Sci. B: Polym. Phys., 17, 1073 (1979)
  11. DeHek H, Vrij A, J. Colloid Interface Sci., 41, 1 (1995) 
  12. Gast AP, Hall CK, Russel WG, J. Faraday. Discuss. Chem. Soc., 76, 189 (1983) 
  13. Grimson MJ, J. Chem. Soc.-Faraday Trans., 79(2), 817 (1983)
  14. Victor JM, Hansen JP, J. Phys. Lett., 45(L), 307 (1984)
  15. Mahadevan H, Hall CK, AIChE J., 36, 1517 (1990) 
  16. Mahadevan H, Hall CK, AIChE J., 38, 573 (1992) 
  17. Vlachy V, Prausnitz JM, J. Phys. Chem., 96, 6465 (1992) 
  18. Vlachy V, Blanch HW, Prausnitz JM, AIChE J., 39, 215 (1993) 
  19. Chiew YC, Macromol. Phys., 70, 129 (1990)
  20. Kuehner DE, Blanch HW, Prausnitz JM, Fluid Phase Equilib., 116(1-2), 140 (1996) 
  21. Asakura S, Oosawa F, J. Chem. Phys., 22, 1255 (1954)
  22. Gast AP, Hall CK, Russel WG, J. Colloid Interface Sci., 96, 251 (1983) 
  23. Prausnitz JM, Lichtenthaler RN, Azevedo EGD, Molecular Thermodynamics of Fluid Phase Equilibria, Prentice-Hall, Englewood Cliffs, NJ (1986)
  24. Young DA, J. Chem. Phys., 98, 9819 (1993) 
  25. Song YH, Lambert SM, Prausnitz JM, Ind. Eng. Chem. Res., 33(4), 1047 (1994) 
  26. Camahan NF, Starling KE, J. Chem. Phys., 51, 635 (1969) 
  27. Kuehner D, Heyer C, Ramsch C, Fornefeld UM, Blanch HW, Prausnitz JM, Biophys. J., 73, 3211 (1997)
  28. Albertsson PA, Partition of Cell Particles and Macromolecules, Wiley, New York (1986)
  29. Hamaker HC, Physica IV, 10, 1058 (1937)
  30. Kim SG, Bae YC, Ryu SO, Korean J. Chem. Eng., 17(6), 638 (2000)
  31. Curtis RA, Steinbrecher C, Heinemann M, Blanch HW, Prausnitz JM, Biophys. Chem., 98, 249 (2002)