화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.35, No.2, 199-204, April, 1997
수첨 탈금속 촉매에서 침적과 활성 저하의 수학적 모델
A Mathematical Model for Deactivation of Hydrodemetallation Catalysts by Metals Deposition
초록
석유 유분 가운데 잔사유를 수첨 처리하면, 표면 피독과 함께 금속 성분이 침적되어 촉매 활성이 떨어지는 것으로 알려져 있다. 이때 활성 저하를 입자 안에서의 확산과 반응으로부터 계산하려면, 유효 확산 계수와 반응속도 상수를 입자 안의 각 위치에서 알아야 한다. 반응속도 상수가 달라지는 것은, 침적으로 말미암은 표면적의 변화와 피독에 의한 표면 활성의 변화로 나누어 보고자 한다. 공극과 침적의 확률 및 표면 피독에서 추론하여, 금속 성분의 침적으로 인한 활성 저하를 이론적으로 정리하고자 한다. 그 주요한 결과로는, 이들의 변화와 침적과의 관계를 무차원 식으로 얻었다. 공극과 침적의 확률로부터 접근하여, 유효 확산 계수의 감소와 표면적의 축소를 침적의 함수로 이끌어 내었다. 거기에 포함된 매개변수는 기공과 유기 금속 복합물의 크기의 비율이다. 한편 표면 활성의 변화는 표면 피독과 침적의 속도로부터, 역시 침적의 함수로 이끌어 내었다. 나아가 등온 조건에서, 하나의 촉매 입자에서 활성이 떨어지는 바를 살펴보았다.
Primary causes of deactivation of hydrodemetallation catalysts are partial poisoning of the interior surface and pore plugging by deposition of metals. Local changes in effective diffusivity and reaction rate constant should be taken into account, to describe the drop in activity by intraparticle diffusion and reaction. Local reaction rate constant varies with both changes in surface area and surface activity, along the position within the catalyst particle. Attempts are made to describe mathematically the deactivation of catalyst, resulting dimensionless equations for those changes. Derived from the probability of void and deposition, reduction of local effective diffusivity and shrinkage of local surface area are formulated as functions of deposits. Included parameter is turned out to be the ratio of size of organometallic compounds to the pore diameter. The change in surface activity is also given as a function of deposits, from the kinetics of surface fouling and deposition. The treatment is for a single, isothermal catalyst particle.
  1. Sughrue EL, Adarme R, Johnson MM, Lord CJ, Phillips MD, "Catalyst Deactivation 1991," Bartholomew, C.H. and Butt J.B., Eds., Elsevier, Amsterdam, 281 (1991)
  2. Oelderik JM, Sie ST, Bode D, Appl. Catal., 47, 1 (1989) 
  3. Tamm PW, Harnsberger HF, Bridge AG, Ind. Eng. Chem. Process Des. Dev., 20(2), 262 (1981) 
  4. Newson E, Ind. Eng. Chem. Process Des. Dev., 14(1), 27 (1975) 
  5. Dautzenberg FM, Van Klinken J, Pronk KMA, Sie ST, Wijffels JB, ACS Symp. Ser., 65, 254 (1978)
  6. Oyekunle IO, Hughes R, Ind. Eng. Chem. Res., 26(10), 1945 (1987) 
  7. Hughes CC, Mann R, ACS Symp. Ser., 65, 201 (1978)
  8. Khang SJ, Mosby JF, Ind. Eng. Chem. Process Des. Dev., 25(2), 437 (1986) 
  9. Rajagoplan K, Luss D, Ind. Eng. Chem. Process Des. Dev., 18(3), 459 (1979) 
  10. Spry JC, Sawyer WH, Preprint 30C. 68th Annual AIChE Meeting, Los Angeles (1975)
  11. Ahn BJ, Smith JM, AIChE J., 30(5), 739 (1984) 
  12. Smith BJ, Wei J, J. Catal., 132, 41 (1991) 
  13. Weissberg HL, J. Appl. Phys., 34, 2636 (1963) 
  14. Lee HH, AIChE J., 40(12), 2022 (1994) 
  15. Tsai MC, Chen YW, Li C, Ind. Eng. Chem. Res., 32(8), 1603 (1993) 
  16. De Jong KP, Kuipers HPCE, Van Veen JAR, "Catalyst Deactivation 1991," Bartholomew C.H. and Butt J.B., Eds., Elsevier, Amsterdam, 289 (1991)
  17. Sie ST, Chem. Eng. J., 50, 1 (1993)