화학공학소재연구정보센터
Journal of Chemical Physics, Vol.118, No.4, 1957-1969, 2003
Molecular dynamics simulations of ionic concentration gradients across model bilayers
To model a concentration gradient across a biomembrane, we have performed all-atom molecular dynamics simulations of NaCl solutions separated by two oppositely charged plates. We have employed the recently formulated three-dimensional Ewald summation with correction (EW3DC) technique for calculations of long-range electrostatics in two-dimensionally periodic systems, allowing for different salt concentrations on the two sides of the plates. Six simulations were run, varying the salt concentrations and plate surface charge density in a biologically relevant range. The simulations reveal well-defined, atomic-level asymmetries between the two sides: distinct translational and rotational orderings of water molecules; differing ion residency times; a clear wetting layer adjacent only to the negative plate; and marked differences in charge density/potential profiles which reflect the microscopic behavior. These phenomena, which may play important roles in membrane and ion channel physiology, result primarily from the electrostatics and asymmetry of water molecules, and not from the salt ions. In order to establish that EW3DC can accurately capture fundamental electrostatic interactions important to asymmetric biomembrane systems, the CHARMM force-field (with the corrected Ewald sum) has been used. Comparison of the results with previously published simulations of electrolyte near charged surfaces, which employed different force-fields, shows the robustness of the CHARMM potential and gives confidence in future all-atom bilayer simulations using EW3DC and CHARMM. (C) 2003 American Institute of Physics.