HWAHAK KONGHAK, Vol.41, No.1, 26-32, February, 2003
아임계 및 초임계수하의 p-Xylene의 무촉매 부분 산화반응에서 반응조건이 Terephthalic acid의 선택성에 미치는 영향
Effects of Reaction Conditions on Selectivity of Terephthalic acid in Uncatalyzed Partial Oxidation of p-Xylene under Subcritical and Supercritical Water
E-mail:
초록
아임계와 초임계수 매체하에서 p-xylene을 과산화수소에 의해 무촉매로 부분 산화시켜 terephthalic acid(TPA)를 제조하는 가능성을 실험적으로 검토하였다. 회분식 반응실험을 통해 p-xylene의 전화율과 TPA의 선택성에 미치는 반응온도, 압력, 과산화수소의 주입비의 영향을 검토하였고, 반응생성물로부터 p-xylene의 새로운 산화 분해 경로를 제시하였다. 반응 시작 후 20분이 경과하였을 때 p-xylene의 전화율은 아임계수 조건에서 89.0% 이상이었고, 초임계수 조건에서는 99.0% 이상으로 온도가 높아질수록 증가하였다. TPA의 선택성은 초임계수 조건보다는 아임계수 조건에서 더 높았으며, 특히 온도 300 ℃, 압력 220 bar, 과산화수소 주입비 50%일 때 TPA 수율은 29.0%로 최대값을 나타내었다. 또한 TPA 선택성에 미치는 압력의 영향은 초임계수보다는 아임계수 조건에서 더 큰 것으로 나타났다.
The possibility of manufacturing the terephthalic acid(TPA) by partial oxidation of p-xylene without a catalyst in subcritical and supercritical water medium was investigated experimentally. The effects of reaction conditions such as reaction temperature, pressure and hydrogen peroxide feed ratio on the conversion of p-xylene and the selectivity of TPA produced were investigated in batch reactor and new oxidation reaction pathway of p-xylene was proposed. Conversion of p-xylene was about 89.0% in subcritical condition and increased with the temperature increasing, over 99.0% in supercritical condition after 20 minutes from the start of reaction. The selectivity of TPA in subcritical conditions was higher than in supercritical conditions and the maximum value was 29.0% at 300 ℃, 220 bar, 50% H2O2 feed ratio. The pressure effect on TPA selectivity was
higher at subcritical water condition than that at the supercritical condition.
- Lee YW, News Inf. Chem. Eng., 19(3), 325 (2001)
- Marrone PA, Gschwend PM, Swallow KC, Peters WA, Tester JW, J. Supercrit. Fluids, 12(3), 239 (1998)
- Holliday RL, Jong BYM, Kolis JW, J. Supercrit. Fluids, 12(3), 255 (1998)
- Lee YW, News Inf. Chem. Eng., 19(4), 457 (2001)
- Hwang GC, Choi JH, Bae SY, Kumazawa H, Korean J. Chem. Eng., 18(6), 854 (2001)
- Kabyemela BM, Takigawa M, Adschiri T, Malaluan RM, Arai K, Ind. Eng. Chem. Res., 37(2), 357 (1998)
- Joung SN, Ahn SH, Yoo KP, Noh MJ, Han JH, Han SH, HWAHAK KONGHAK, 36(1), 92 (1998)
- Han JH, News Inf. Chem. Eng., 17(6), 423 (1999)
- Ahn SH, Joung SN, Yoo KP, Noh MJ, Han JH, Han SH, Korean J. Chem. Eng., 15(4), 390 (1998)
- Koo C, Lee KS, HWAHAK KONGHAK, 32(3), 385 (1994)
- Goto M, Nada T, Kawajiri S, Kodama A, Hirose T, J. Chem. Eng. Jpn., 30(5), 813 (1997)
- Lee WY, Park SD, Yeo SD, HWAHAK KONGHAK, 39(2), 257 (2001)
- Park CY, Ryu YW, Kim C, Korean J. Chem. Eng., 18(4), 475 (2001)
- Osora H, Tachibana S, Imai T, Moriya T, Kag. Kog. Ronbunshu, 26(3), 381 (2000)
- Nam SE, Petrochem. Bull., 103(2), 12 (2001)
- Yasutaka T, Iwahama T, Sakaguchi S, Ishii Y, Adv. Synth. Catal., 343(2), 220 (2001)
- Raghavendrachar P, Ramachandran S, Ind. Eng. Chem. Res., 31(2), 453 (1992)
- Reynolds WC, "Thermodynamic Properties of Steam in SI," Ph.D. Dissertation, Department of Mechanical Engineering, Stanford, University (1997)
- Vogel F, Harf J, Hug AR, Rohr P, Environ. Prog., 18, 7 (1999)
- Croiset E, Rice SF, Hanush RG, AIChE J., 43(9), 2343 (1997)
- Gopalan S, Savage PE, J. Phys. Chem., 98(48), 12646 (1994)
- Portela JR, Lopez J, Nobot E, Martinez OE, J. Hazard. Mater., 88, 95 (2001)
- DiNaro JL, Howard JB, Green WH, Tester JW, Bozzelli JW, J. Phys. Chem. A, 104(45), 10576 (2000)
- Narayan R, Antal MJ, J. Am. Chem. Soc., 112, 1927 (1990)
- Koo M, Lee WK, Lee CH, Chem. Eng. Sci., 52(7), 1201 (1997)
- Han SH, Han JH, Noh MJ, Yoo KP, Chem. Ind. Technol., 15(6), 538 (1997)