화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.34, No.6, 765-771, December, 1996
나노크기의 티타늄실리카라이트-1(TS-1) 제올라이트의 합성
Synthesis of Nano-sized Titanium Silicalite -1(TS-1_ Zeolite
초록
나노크기의 티타늄실리카라이트-1(TS-1) 제올라이트를 결정성장 관찰과 결정크기의 조절이 가능한 상압, 100℃ 이하에서 수열합성법으로 합성하였다. 반응온도가 낮아질수록 유도기간이 길어졌고 결정화속도와 얻어진 최종 입자크기가 감소하였다. 각 합성온도에서 결정화 진행 중의 평균 결정크기는 시간에 따라 직선적인 증가 형태를 나타내었고 결정화에 대한 겉보기 활성화에너지는 86.7kJ/mol였다. 80℃에서 반응시 60시간에 약 50 nm의 결정성을 지닌 TS-1 입자들을 얻었다. 이러한 나노크기의 TS-1 제올라이트는 750℃까지 Ti이 골격에 치환된 MFI 구조를 갖고 있었으며 새로운 분야에 응용을 가능케 할 것이다.
Nano-sized titanium silicalite-1(TS-1) zeolite was synthesized by using hydrothermal synthesis at the atmospheric pressure and the temperatures lower than 100℃. This systhetic method makes it possible to control the particle size of TS-1. As the reaction temperature decreased, the induction period increased and the rate of crystallization and the final crystal size decreased. During the crystallization, average crystal size of TS-1 zeolite was linearly increased with reaction time. The apparent activation energy of crystallization was 86.7kJ/mol. When the reaction time was 70 hours at 80℃, average particle size of TS-1 with 50nm in diameter was obtained, which have TS-1 zeolite crystallinity up to 750℃. Nanosized TS-1 zeolite may be applicable to the new field of zeolite.
  1. Bhatia S, "Zeolite Catalysis Principles and Applications," CRC Press, Boca Raton (1990)
  2. Breck DW, "Zeolite Molecular Sieves," John Wiley, New York (1974)
  3. Barrer RM, "Hydrothermal Chemistry of Zeolites," Academic Press, New York (1982)
  4. Bekkum H, Flanigen EM, Jansen JC, "Introduction to Zeolite Science and Practice. Studies in Surface Science and Catalysis," Elsevier, 58, 1 (1991)
  5. Flanigen EM, Bennett JM, Grose RW, Cohen JP, Patton RL, Kirchner RM, Nature, 271, 512 (1978) 
  6. Meier WM, Olson DH, "Atlas of Zeolite Structure Types," 3rd ed., Butterworth-Heinemann, London (1992)
  7. Taramasso M, Perogo G, Notari B, U.S. Patent, 4,410,501 (1983)
  8. Tatsumi T, Nakamura M, Yuasa K, Tominaga H, Catal. Lett., 10, 259 (1991) 
  9. Bellussi G, Carati A, Clerici MG, Maddinelli G, Millini R, J. Catal., 133, 220 (1992) 
  10. Tasumi T, Yuasa K, Tominaga H, J. Chem. Soc.-Chem. Commun., 1446 (1992)
  11. Esposito A, Taramasso M, Neri C, Buonomo F, U.K. Patent, 2,116,974 (1985)
  12. Thangaraj A, Kumer R, Ratnasamy P, Appl. Catal., L1 (1990)
  13. Suzuki K, Kiyozumi Y, Matsuzaki K, Shin S, Appl. Catal., 35, 401 (1987) 
  14. Kiyozumi Y, Shin S, Shul YG, Ihm SK, Koo KK, Korean J. Chem. Eng., 13(2), 144 (1996)
  15. Yi KH, Ihm SK, Microporous Mater., 1, 115 (1993) 
  16. Karakitosu KE, Verykios XE, J. Phys. Chem., 97, 1184 (1993) 
  17. Schoman BJ, Sterte J, Otterstedt JE, Zeolites, 14, 110 (1994) 
  18. Thangaraj A, Eapen MJ, Sivasanker S, Ratnasamy P, Zeolites, 12, 943 (1992) 
  19. VonBallmoos R, "Collectionof Simulated XRD Powder Patterns for Zeolites," Butterworth & Co. Ltd. (1984)
  20. Twomey TAM, Mackay M, Kuipers HPCE, Thompson RW, Zeolites, 14, 162 (1994) 
  21. Zhdanov SP, Samuelvich NN, "Proceedings of the 5th International Zeolite Conference on Zeolites (ed. Rees, L.V.C.)," Heyden, London, 75 (1980)
  22. Lin MY, Lindsoy HM, Weitz DA, Ball PC, Meakin P, Nature, 339, 360 (1989) 
  23. Coudurier G, Naccache C, Vedrine JC, J. Chem. Soc.-Chem. Commun., 1413 (1982)
  24. Perego G, Bellusi G, Corno C, Stud. Surf. Sci. Catal., 28, 129 (1996)
  25. Jung KT, Hyun JH, Kim DS, Shul YG, "Proceedings of the 11th International Congress on Catalysis," Baltimore, U.S.A. (1996)
  26. Schoman BJ, Sterte J, Otterstedt JE, Zeolites, 14, 208 (1994) 
  27. Jung KT, Hyun JH, Kim DS, Koo KK, Shul YG, 5th World Congress on Chemical Engineering, Sandiego, U.S.A. (1996)