화학공학소재연구정보센터
Journal of Chemical Technology and Biotechnology, Vol.77, No.10, 1157-1168, 2002
Online monitoring of a bioprocess based on a multi-analyser system and multivariate statistical process modelling
Multivariate statistical process control (MSPC) was for the first time applied to analyse data from a bioprocess on-fine multi-analyser system consisting of an electronic nose (EN), a near-infrared spectroscope (NIRS), a mass spectrometer (MS) and standard bioreactor probes. One hundred and fifty sensor signals from the electronic nose, 1050 wavelength signals from the NIRS, carbon dioxide evolution rate calculated from mass spectrometer signals and standard bioreactor data (eg amount of substrate fed) were interrogated for their ability to model a bioprocess using MSPC. The models obtained were validated on a recombinant Escherichia coli fed-batch process for tryptophan production. Limiting trajectories were defined in the MSPC models for warning, action, and process experience with respect to biomass and tryptophan concentrations. The results showed the capacity and robustness of MSPC models for monitoring with multi-analysers and allowed a comparison of the different analysers' suitability for this kind of data processing. Furthermore, the results demonstrate that MSPC models provide a functional and versatile framework for coping with large information flows and are also suited to a variety of other bioprocessing monitoring and control tasks.