Journal of Applied Polymer Science, Vol.86, No.12, 3047-3056, 2002
Synthesis of chitosan-modified poly(methyl methacrylate) by emulsion polymerization
Emulsion polymerization of methyl methacrylate (MMA) in the presence of chitosan was studied and a reaction mechanism was proposed. It was proved in the companion article that potassium persulfate (KPS) free radicals can degrade chitosan chains into chain free radicals. Therefore, it is possible to produce a chitosan copolymer when the monomer and the KPS initiator are added into the chitosan solution. According to the proposed mechanism, concentrations of different species such as the initiator, total free radicals, and degraded chitosan chain were calculated with the reaction time. All the results a-reed with the experimental observation. The results showed that the polymerization rate varied with 0.83- and 0.82-order of the total free-radical concentration and chitosan repeating unit concentration, respectively. It was also verified that chitosan played multiple roles in the reaction system. If the monomer was added into the chitosan solution before the addition of KPS, chitosan served mainly as a surfactant. Consequently, the polymer particle number was increased with the chitosan addition and so was the polymerization rate. However, if the monomer was added into the solution where the chitosan was already degraded by KPS, the polymerization rate was decreased with the predegradation time of chitosan. In both cases, the final polymer particles consisted of the poly(methyl methacrylate) (PMMA) homopolymer and the chitosan-PMMA copolymer.