화학공학소재연구정보센터
Enzyme and Microbial Technology, Vol.31, No.4, 398-402, 2002
Hydrogen evolution and consumption in AOT-isooctane reverse micelles by Desulfovibrio gigas hydrogenase
The enzyme hydrogenase isolated from the sulphate reducing anaerobic bacterium Desulfovibrio gigas was encapsulated in reverse micelles of AOT-water-isooctane. The enzyme ability to consume molecular hydrogen was studied as a function of the micelle size (given by W-o = [H2O]/[organic solvent]). A peak of catalytic activity was obtained for W-o = 18, a micelle size theoretically fitting the heterodimeric hydrogenase molecule. At this W-o value, the recorded catalytic activity was slightly higher than in a buffer system (K-cat = 169.43 s(-1) against the buffer value of 151 s(-1)). The optimal buffer used to encapsulate the enzyme was found to be imidazole 50 mM, pH 9.0, The molecular hydrogen production activity was also tested in this reverse micelle medium.